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ABSTRACT

There are many reasons for wanting to quantify spatio-temporal correlations in
geophysical signals f{x) over a large range of scales r. Standard approaches use either the
autocorrelation function (f{ix+r)fix)) or the related 2nd-order structure function
{[fx+r0)1?), equivalently (Wiener-Khinchin theorem), the wavenumber spectrum
E(k), with k = 1/r as the scale parameter. These are all 2nd-order statistics however, and
they do not discriminate well between fields with sometimes radically different spatial
properties. For example, in seismic signals the background (possibly instrumental) noise
can be modeled as white whereas the interesting events are more like Dirac 3-functions:
both components are §-correlated in the sense of {(f{x+r)f(x)) and have correspondingly
flat wavenumber spectra E(k) = constant. In another instance, temporal fluctuations of air
temperature are Brownian motion-like, with {[fx+r)fx)]? e r (hence E(k) = k~2),
under quiescent meteorological conditions; unfortunately, the same spectrum is assigned
to the occurrence of a quasi-discontinuity marking the passage of a front, as approximated
by a Heaviside step function. The issue at hand is resolved by introducing the notion of
“intermittency,” a concept borrowed from turbulence theory that describes the occurrence
of bursts of intense events; statistically speaking, we are faced with the break-down of
the prevailing Gaussian paradigm in data analysis. To characterize intermittency, some
form of wavelet-type time/frequency (or position/scale) analysis is required. Multifractal
approaches to position/scale analysis are particularly easy to exploit: they use higher-
order moments as a simple way of sorting the continuum of weak, intermediate, and
strong events, and we look for power-law regimes in the resulting scale-dependent
statistical quantities at all orders. The two main categories of multifractal analysis,
gth-order structure functions and singularity analysis, are surveyed and illustrated with
both models and cioud-related data in 1D and 2D. We address in detail the sampling (or
“ergodicity”) problems that arise as soon as Gaussian assumptions are relaxed and their
relation to both stationarity and intermittency is discussed. Finally, we outline how
multiscaling has helped to further the theory of cloud-radiation interaction, as applied to
the forcing of the climate system and the remote sensing of cloud properties.

tAlso: Science Systems and Applications, Inc. (SSAI), 5900 Princess Garden Parkway, Lanham, Md.
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1. Introduction

1.1 Background

There is an increasing need in the geophysical community for statistical analysis of
data. This need is traditionally met with techniques developed within entirely different
areas of research. For example, first and second order statistics —means, variances and
covariances— found their foremost applications in psychometrics. These well-known
quantities are the parameters of the most general multivariate Gaussian distribution.
Their counterparts in time-series analysis are the 2-point autocorrelation function and the
wavenumber spectrum which proved to be powerful tools for solving engineering
problems in communications and signal processing.

Over the decades, it became apparent that Gaussian —and otherwise “thin-tailed”—
statistics were ill-suited to describe many random signals that reflect the variability of
geophysical fields. Stretched exponentials, log-normal and even power-law distributions
were introduced to describe seismic activity, rain-rates, atmospheric turbulence, and
numerous other natural phenomena. Opening the Pandora’s box of non-Gaussian
statistics with “long-" or “fat-tailed” distributions (Waymire and Gupta 1981) raises
important questions about sampling. We will refer to these issues generically as
“ergodicity” problems, a terminology that better reflects our model-based investigation.
The basic question is: Do space/time averages converge to well-defined ensemble
counterparts with sample size and how fast? More formally put: How much of
probability space do we need to explore to characterize a distribution? For exactly
Gaussian processes, the answer to these questions is more-or-less contained in the “36”
rule: events more than three standard deviations away from the mean are improbable at
the level 0.001.1 We will show further on examples of natural variability where the
standard deviation itself is not even pinned down after many thousands of observations.

In our experience with geophysical data analysis, we have encountered at least two
sources of ergodicity problems that generally appear compounded: “intermittency,” and
“nonstationarity.” We are adopting vocabulary from time-series analysis here for
simplicity but have either space or time in mind. [Rather than “(non)stationarity,” the
technically correct usage in random field theory is statistical “(in)homogeneity.”
However, in keep with cloud-modeling usage, we will reserve this last expression to
designate (non-)constant fields which, in turn, are “(non-)trivial” from the times-series
perspective.]

» It is natural to think that estimates of statistical properties of geophysical signals are

independent of the instant when observations start and stop.?2 This is effectively a

“stationarity” assumption, i.e., averages are statistically invariant under translations

YEvery “Gaussian-type” or “thin-tailed” distribution has a similar rule; e.g., deviations in excess of 4.9
6’s from the mean | are unlikely at the level 10~3 for Laplace’s probability law:
Prob{X <& < X+X} = exp[—Y 2X-pi/c1dX/(N 20).
2We assume here that all the observations belong to a well-defined class within which we can perform
meaningful statistics. At least in atmospheric applications, this may impose external limits on the time of
day, the season and the position on the globe.
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in space or time. Observation time is irrelevant to systems in some kind of dynamical
equilibrium. However, very long-range correlations can and do occur in geophysical
signals because of the sheer size of the system and the coherent, long-lived structures
generated by the large-scale forcing and the highly nonlinear character of the
dynamics. In other words, stationarity is generally not a good assumption, at least at
close range (small scales). The weaker assumption of nonstationarity with stationary
increments is generally good enough at all scales (examples to follow). Only when
the record is exceptionally long, do we observe a transition to stationarity per se. In
summary, the questions to ask is for how long are the data correlated?’ or ‘how long
must we wait to isolate independent samples in a given datastream?’

+ Assuming that the nonstationarity has been tamed by focusing on the appropriate
quantities to be averaged (e.g., increments), we can still be faced with
“intermittency” problems. We borrow this concept from turbulence theory to
describe the occurrence of sudden bursts of intense variability, very uncharacteristic
of Gaussian processes —stationary or not. Following a now well-established
tradition in turbulence studies (Parisi and Frisch 1985, Meneveau and Sreenivasan
19874, etc.), we can use “multifractal” statistics to describe intermittency in natural
signals. These are straightforward generalizations of the 2nd order statistics
mentioned above where moments of all orders —within limits set by sampling
considerations— are computed on a scale-by-scale basis and where the dependence
on scale is parameterized by power laws. We thus define “scaling” regimes and
associated families of exponents.

A priori, nonstationarity and intermittency are purely qualitative attributes when it comes

to data analysis. Furthermore, some if not all of the positional information needed to

make a statement about stationarity is lost due to the spatial averaging that produces the
statistics in the first place. We will show that, in the framework of scale-invariant
processes, nonstationarity and intermittency can both be not only detected (cf. §5.1 and

§6.3) but precisely quantified as well (cf. §4.5).

Fractal (single-moment) and multifractal statistics were originally perceived as
abstract and were criticized for having little bearing on the underlying physics. Serious
efforts have been put forth to make multifractal concepts attractive to a broad range of
geophysicists (e.g., Davis ef al. 19944), and their connections with wavelet analysis are
now well-understood (Muzy et al. 1994). 1t is true that fractal concepts become
mathematically precise in the small-scale limit ... which is generally unjustified on
physical grounds. Nevertheless, “physical” fractals (with well-defined inner- and outer-
scales) have proven to be very helpful models of reality in a broad range of applications.
In fact, the limits of the scaling regimes themselves convey as interesting information on
the system as do the exponents, if not more. We will survey our findings in this area with
respect to cloud structure and cloud-radiation interaction.

1.2 Overview: The “Laboratory” Model for Geophysical Data Analysis

The paper is organized as follows —in the spirit of a report on a laboratory
experiment (cf. Fig. 1). The goal of the “experiment” is to characterize the structure of
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Figure 1: Flow-Chart for the “Laboratory” Model for Scale-by-Scale Statistical Analysis of Geophysical
Data. There are two feed-back loops. One signifies that new theory makes new predictions to be verified
with new data (from new instruments if necessary). The other represents the production of synthetic data
with stochastic models to calibrate the statistical “instrumentation” with standard input. Stocahstic
modeling also feeds into the body of theory that explains the data. In the case of cloud-radiation theory, the
numerical modeler can control the weather in his digital cloud system, the simplest models may be
amenable to analytic methods.
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marine stratocumulus for the purposes of radiative transfer computations. These are

climatologically important cloud systems, and our main motivations to study them are (i)

improved models for understanding the atmospheric radiation budget, hence present and

future climate, and (ii) improved methods for retrieving cloud properties from remotely-
sensed signals.

* Section 2 (“Sample Collection”): we present 1D and 2D data pertaining to marine
stratocumulus and further motivate their study.

e Section 3 (“Instrumentation™) describes the basic tools of scale-by-scale statistical
analysis: coarse-graining, autocorrelation, structure functions and spectral analysis.

* Section 4 (“Results”) establishes the relevance of power-law parameterizations for
scale-dependent cloud statistics and defines notations for the associated exponents.

* Section 5 (“Semi-Empirical Criteria”) shows how we interpret certain scaling
properties, with an emphasis on ergodicity issues: stationarity, intermittency and the
onset of sampling problems are discussed.

¢ Section 6 (“Theoretical Considerations”): we rephrase our outlook on data analysis in
terms of symmetry and broken symmetry; this impacts directly our understanding of
cloud structure and how it transpires in satellite images. We also draw parallels
between our methods and those of statistical physics.

¢ Section 7 is a summary.

* Appendix (“Calibration and Simulation”): a number of scale-invariant models are
introduced and classified according to the criteria in Section 5. These algorithms for
generating synthetic data have many applications, our present concerns being (1)
assessment of the reliability of analysis procedures and (2) simulation of realistic
clouds-in-a-computer that enable numerical radiation transport studies. In all cases,
the statistical properties —namely, the exponents— are known a priori.

2. SAMPLE COLLECTION (Cloud Data as an Object of Study)

When designing an experiment, generally to test some hypothesis, the first questions
to ask are ‘What are we going to study?’ and ‘Why?’. We can view data analysis as a
straightforward experimental procedure where the object of study is the data itself (Fig.
1). We will assume it to be stored in a 1D or 2D array of real numbers residing in
computer memory. In this section, we present geophysical data and present a rationale
for an in-depth study of its statistical properties. The next questions are closely related:
to each other: ‘What properties are we interested in?’ and ‘What instruments will we use
to probe our sample?’. They are addressed in sections 3—4.

We present here data used in our specific research area: intemnal structure of marine
stratocumulus (Sc) and its impact on radiation transport. Generally speaking, cloud-
radiation interaction is a source of considerable uncertainty in the prediction of climate
and climate change. Being both persistent and extended, marine Sc layers are responsible
for a large portion of the Earth’s global albedo, hence the planet’s overall energetic
equilibrium. A robust statistical characterization of marine Sc structure is therefore in
order. In particular, this will allow us to develop statistically realistic cloud models
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which can in turn be used to investigate radiation issues. An improved understanding of
how physical cloud properties relate to their radiation fields has important spin-offs in the
area of remote sensing. This is the only cost-effective way of monitoring cloud cover
from synoptic to pixel scales (several kilometers or meters, depending on the device).

2.1 One-Dimensional in Situ Transects of Liquid Water Content from FIRE
2.1.1 Internal Cloud Structure Using Taylor’s Frozen Turbulence Hypothesis

Clearly, there is no better way to study cloud structure than by direct probing. This
calls for a fully instrumented aircraft and, because of the costs involved, few datasets of
this type are available. Furthermore, cloud liquid water content (LWC) measurement is
still an area of active research (Gerber et al. 1994). We present here transects of LWC in
marine Sc that we will use to illustrate 1D data analysis in the remainder of the paper.

In Figs. 2a-e, we show representative samples of LWC vs. time from five flights (or
flight legs) during FIRE! in June-July 1987 off the coast of southern California.
Following a well-established practice in the turbulence literature (Taylor’s frozen
turbulence hypothesis), we perceive these time-series as 1D cuts through the spatially
variable LWC field:

[ixm), xm=mf,m=1,.. M; (i=1,...,5). 1)

Table 1 shows the important parameters of the datasets, described in more detail by Davis
et al. (1996a). In particular, they tentatively relate the down-spikes that characterize
Figs. 2a,b to dynamical instabilities, and they question the reality of the strong “dip” in
Fig. 2c. In the following analyses, events affected by this feature are ignored but
Marshak ez al. (1996) examine the consequences of not eliminating the spurious dip.

Table 1: FIRE Liquid Water Content (LWC) Database. The statistically relevant parameters of the various
datasets are collated. They were obtained from an airborne platform during the FIRE 1987 stratocumulus
experiment, off San Diego (Ca.). A nominal aircraft speed of 100 m/s was used to convert time to space,
the sampling rate being 20 Hz.
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Date Time M log2M Length L Character Comment 2o
(1987) (GMT) (points) (km) L AEY)
6/30 22:41 28672 14.81 - 143 spiky downward ° 1o 200 200 w00 : . e e o
702 02:23 16384 14 82 spiky downward v (o) 1 (vec)
7/14  23:09 65536 16 328 smooth  suspicious dip
me 17:17 8192 13 41 mixed spikes down Figure 2: Liquid Water Content (LWC) Transects from In Situ Airborne Probings of Marine
7/16  18:19 12020 13.55 60 mixed spikes up Stratocumulus. (a—e) Representative portions of the five datasets described in Table 1; these are examples
of nonstationary processes with stationary increments (Fig. 4 and §5.1) and multiscaling structure functions
2.1.2 Visualizing Intermittency with Small-Scale Absolute Gradients (Fig. 6 and §4.2). These data were collected in marine stratocumulus during FIRE in 1987 off the coast of
! southern California. (a’-e’) Absolute next-neighbor differences for the data in panels (a—e); these are
The most interesting (i.e., strong and somehow “organized”) features in Figs. 2a—¢ are E; examples of intermittent stationary processes (Fig. 4 and §5.1) with bone fide multifractality (Table 2 and

the large and well-localized downwards deviations that occur intermittently but §5.3), as revealed by singularity analysis (Fig. 8 and §4.4).

I First ISCCP Regional Experiment (ISCCP = International Satellite Cloud Climatology Project).



Radiance Field of Marine Stratocumulus. Gray-scale rendering of a 4096x4096 portion of a
{andsat image of a typical cloud deck off the coast of southern California. This.scene w.as capturve.d at
visible wavelengths (channel 2 of the Thematic Mapper) on June 30 1987; so the climatological conditions
are similar 1o those prevailing when the in situ LWC data in Fig. 2 were obtained.

Figure 3:

S

105

nevertheless seem to cluster. The large jumps that characierize these events are
highlighted by taking the absolute gradients of the data at some small (but presently

unspecified) scale 1. Adopting units where the sampling scale (grid constant) ¢ = | for
simplicity, we have:
&/(Nixm) = fxmen)filxm)l, m=j,.. M+ G= L...nsi=1,....5). (2

The new data obtained from that in Figs. 2a-¢ withn = ¢ = | are presented in Figs. 2a’-e’.

In turbulence studies where fix,,) is most often velocity, 1 is taken to be the
“Kolmogorov” scale where dissipation forces start to dominate inertia. Furthermore, it is
traditional in this context to take squares rather than absolute values in Eq. (2) since this
yields a 1D cut through the physically important field that describes the local rate of
kinetic energy dissipation (Meneveau and Sreenivasan 1987a).

2.2 A Two-Dimensional Radiance Field from LANDSAT Captured During FIRE

An attractive alternative to in situ probing of cloud structure is to use high-resolution
satellite imagery. It is relatively inexpensive compared to outfitting and flying research
aircraft, more comprehensive than aircraft probing or ground-based radiometry (being
2D), and more frequent in time.

Figure 3 is a gray-scale rendering of a large {(4096x4096) section of a cloudy
LANDSAT scene:

S Ymy)s GomysYmy) = (myma)l,my = 1,20 mp=1,....2" (n = 12). (3)

The signal f is digitized over 256 levels and is almost proportional to nadir-viewing
radiance at satellite level (=800 km). LANDSAT’s radiometer was not originally
designed for such bright targets as clouds, so saturation (at f = 255) occurs frequently,
17% in our case. In order to avoid spurious saturation effects, the up-coming statistical
analyses use only the 2048x4096 leftmost pixels which are only 7% saturated.

3. INSTRUMENTATION (Scale-by-Scale Analysis Tools for 1D or 2D Datasets)

Pursuing our analogy between data analysis and laboratory work, we describe the first
part of the experimental procedure. What “measurements” are we going to do? What
“Instruments” are we going to use? The object under scrutiny is cloud data stored in a
large portion of computer (and possibly peripheral) memory. The instruments are
programs that process this data; their output constitute statistical measurements. This
new “data,” residing in far less memory, describes partially the dataset. In essence, we
are observing the statistical “behavior” of the data/subject with different devices and. in a
sense we will define in §3.3, under different “experimental conditions.”

All our instruments have two computational stages, performed in sequence (§3.1) or
in paralle] (§§3.2-4). First comes an analysis procedure that yields, in general, a quite
large number of random variables by resampling and operating on the data. This is
followed by a spatial/ensemble averaging. Consider, as an example, the computation of
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1-point variance {FAH~H2: it calls for (1) forming the 1st and 2nd powers of f(x) then (2)
obtaining their averages over all the available data. In the following, we will consider
exclusively 2- and more-point statistics that contain information about correlations (or
“structure”) in the datastream. Since we always compute statistical properties at a
specific scale r, we refer to these techniques collectively as “scale-by-scale” analyses.

3.1 Spectral Analysis

Correlations in random data can be studied via Fourier analysis, leading to energy
spectrum estimation. This is a well-traveled approach to scale-by-scale analysis where
the scale parameter is wavenumber £, related to the length scale r = 1/k in physical space.

Let 7(k) be the d-dimensional Fourier transform of a field f{x) defined on [0,L)4:

k) = 2rixk) ddx | (4a
J® (O.L[),}x) exp(2nixk) dx )

where the normalized wavevector kL scans Z2. In the discrete case, the above integrals
become sums (with ddx = ¢d);

F &) = £4) fix)xexp(2mixk). (4b)
x

For d = 1, k now goes from —ky, excluded, to +kn, included, where

1
kn=15; s)

is the maximal (or “Nyquist”) wavenumber, by steps of Ak = 1/L; with!

Ly = Mo = 2llog, M)y, 6)

[-] designating integer part. For d = 2, the subset (=knLa,+ANL21®(—knLo,+knlo] of Z2 is
scanned by kLp = (kxlp.kyl2). We note that, for fix) € R, F(—k) =J k)~

In Fourier space, the spatial averaging step is replaced by a summation over phases,
equivalently, over wavenumber sign. We compute the energy? spectrum in d = 1 from

E(k) = (W G-RWZHIF (—k)IR)AK =%’3 (WF (N2 (7a)

for kL € M, and where 8¢z = 1 for k = 0, 0 otherwise. In the discrete (£ > 0) case, the
Fourier series is truncated, hence

1The most popular Fast Fourier Transform packages (e.g., Press et al. 1993) require M to be a power of 2.
If this is not the case, the first and last M7 data points can be treated as two realizations in an ensemble
average. Generally speaking, ensemble averaging over a number of datasets poses no special problem as
long as they have the same £ and Ly; otherwise, common units for k and E(k) must be defined if different
L2’s occur and k-bins must be used if different £'s occur.

2Ek) is called interchangeably “power” or “energy” or “wavenumber” or “frequency spectrum,” and
sometimes “periodogram.”
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29,
Ek =T, QF N2y (7b)

for kL = 0,1,...,L/(2¢). Ind = 2 cases, we assume statistical isotro

_ s py and sum QI &)I12)
over circles of radius k = lkl =\J ky2+ky? in Fourier space. For continuou =
L — o, hence Ak — 0), we have i’ P ® spectra (620,

2r
Bl=_ FL_fliuj’(k)uZ) d2k = kokuf(kcose ksin6)IR) do (8a)
for k2 0. In the discrete (L < e, £> 0) case, klp goes from 0 t0 kpaxLp = [\ 2kLp] and
1
Ek)=7- 3 (F@I) (8b)

» My<kLy<kl,+1
forkLy = 0,1,... . knaxls. i

) It is sometimes advantageous to cumulate and average E(k) and k in -wide bi
({.e., by factors of 2 in k) for k > 0 (Davis ez al, l996af Tl(lei'e are precoi(;gze[lv;lgieMbilj;
bins Whel'l d=1: {klpe N; 2 <kLp < 2i+1-1}, for i = 0, ..., [logaM]-2; this excludes
the Nygmst frequency, the most aliased anyway (Press ez al. 1993). In ¢} = 2 cases, one
more bin can be populated by wavevectors with their modulus between ky and k . in
all, (kL € (—knlpAnL2]?; 2 < KIL, < 2i+l-1} fori=0, ..., [logaM]—1. -

3.2 Two-Point Correlation Analyses at Order 2

There are two physieal space counterparts of s i i i
. pectral analysis for correlation studies.
First, one can form the products Sfx+n8f(x) of the fluctuating part §(x) = fx)—(f) of a 1D

signal at two points and spatially (then, if necessary, ensemble- i
the autocorrelation function: ary ) aversge them to obiain

(Bfx+n)df)) = (fixtry)—{fR. (9a)
ms well-known 2nd order 2—poi9t statistic does not give us any new information since it
is related to the energy spectrum in Egs. (7-8) by the Wiener-Khinchin (W-K) relation:

(Faanfo<fP = [cos@rriyER)dk. (9b)
0

At r =0, the Lh.s. reduces to the 1-point variance, and the r.h.s. i i
), th . .hus. is the inte of E(k);
E(k)Ak is simply the part of the variance that comes from scales ~1/. el ©: 50
One can also form “increments,”

ARrx) = fx+r)—fx), (10
in 1D and compute the 2nd-order “structure function,”
(Afrx)?) = (Ife+ry-fon)]2), (11a)
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also known as a “semi-variogram” (Christakos 1992). Here again there is a W-K relation
with the energy spectrum:

(AMfrx?) =2 0[ [1—cos(2rrk)|E(k)dk, (11b)

as results from identities (Af(rix)2) = 2[R+ )] = 20122~ x+r)8f(x))].
Theoretically (i.e., when doing ensemble rather than spatial averages), these operations
are only meaningful in “broad-sense” stationary situations where (§f{x+r)3f(x)) depends
only on r. However, Eq. (11b) generalizes to nonstationary signals with (broad-sense)
stationary increments, namely, where (Af{r;x)2) is function of r alone.

In isotropic 2D situations, Sfix+ru)dfx) or [fx+ru)-fix)]2 can be obtained by
averaging over the allowable domain of x and the orientation of the unit vector #. This
straightforward approach quickly becomes computationally intractable since it requires
~N2 operations (where N = M2 is the total number of points). In contrast, FFT
implementations of Eqs. (8b) or (11b) require only ~NInN operations; in this case
however, we interpret E(k) as the so-called “1D” spectrum obtained by dividing the r.h.s.
of Eq. (8b) by Xr,ki,<ki,+11, i.., averaging rather than just summing [F(k)Ii2. Another
approach (with only ~N operations and generalizable to higher orders) is adopted in the
remainder of this study: to treat rows and columns as an ensemble of 1D datasets.!

3.3 qth-Order Structure Functions

How can one gain new information in the framework of 2-point statistics? Simply by
looking at moments of order ¢ # 2. The random variables of interest are then IAf{r;x)I
and averaging yields the gth-order structure function:2

(ARr) = (fix+r)-fa)). (12)

Unfortunately, we lose the W—K connection and the computational efficiency of FFTs in
2 or more dimensions. However, the focus on increments is akin to a high-pass filtering.
Therefore, at the cost of using the ~N coefficients of a discrete wavelet decomposition of
flx) as surrogates for Af(r;x), the utilization of multiresolution analysis (Mallat 1989) will
lead to efficient computational algorithms.

What insight do we gain by varying the parameter q? Of all possible values that the
increment & = IAf{r;x)l can take, we can identify
*  “typical” values that occur most frequently, being near the mode of the pdf p(3),
e “mean” values that dominate the average for ¢ = 1 (i.e., maximize &p,(8)),
* “r.m.s.” values that dominate the average for ¢ = 2 (i.e., maximize &%p,(3)).
There are also ever larger and rarer values that dominate higher order statistical moments:
4 =3,4,etc. So, increasing g amounts to looking at the more extreme values of IAf{(r;x)l.

1n theory, sampling is poor (~N out of ~N2 possible events); but N = M;xM,, is already large in general.
2validation of structure function computation and sensitivity studies with respect to amount of data can be
performed with the help of the models presented in the Appendix, more specifically in §A.2 and §A.4.
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obsThl.s is akin to f:hanging the experimental conditions (e.g., temperature 7) and

o erving .changes m.the state of a macroscopic physical system made of many

m:cg;zstcop;;: ellement.s mt;r;::tmg with each other; for instance, a real gas or a ferro-
- By lowering € system can be forced into otherwise v i

) ‘ ery unlikel

m mc li(;(ns. h’l;he observable ('n?acroscoplc) changes can be very subtle ol;yextremelz

— ,h . u‘iadwto [sl :ﬁghaa:’hm transntlo‘:ltll occurs: e.g., a mole of HyO molecules goes from
R - W ver the outcome, we learn more about the ifici

the system (data) by exploring as large a range of s (¢’s) as possible. Spectfclty of

3.4 Running Averages and the gth-Order Moments of the Coarse-Grained Field

e 'll;hrz; :jsgch;l;;asns]e IZlntenv'alngu inzp;)lig(t) Wh;,n takl. ing increments over various scales eliminates
4 m the picture. What about the conve i
computu?g local Imeans (low-pass filter output) at various scales? e operation.
Consider for instance the running mean! of f{x) over [x,x+r):

xX+r

1
Wrn) = Jfwa, (13a)

forx=[0,L-r)andr > 0 In the 2D case i ing i
. , Spatial averaging is over the i
bxx+r)®[y,y+r) of area r2. Consider also running variance of f{(x) over [x,xsfrl;?r © domain

xX+r

1
Of(rx) = ;x_[f(x')zdx’ ~ pArx)2. (13b)

ﬁeo:: ;g;:li(;a:;;uzi ;Il]e abi)i\]/e runm']g%1 means and variances, we hold x constant and vary
X y until some kind of “convergence” is obtained (cf. di i
Fig. 8a). Instead, we can think of r e poussion of
. . . as a fixed parameter; then pAr;x) and oAr;
:;ttz:;ttlliil in Egs. (!3a,b), are ran.dom numbers. From this perspective, vffe cz)m studg{(t;ji)r’
; “al properties by averaging over x, the position of the segment or square (cf.

By resampling x at intervals of length r in
E g - Eq. (13a), we obtain a “coarse-grained”
version of the original field fx), with L/r pixels rather than L/¢. This is ofepirrt?::l:r

interest for the absolute gradients defined j . -
Eqgs. (13a), we define ¢ in Eq. (2). In the 1D continuum limit used in

X+r

1
Brx) =pebin) = fe(e)dr’, r20
r Jewar,rzo, (14a)

In the 1 i
ﬁmcﬁonx;?ipu:‘g;: (:}f“sc::):]l:::;loﬁlu:c\;:;selft I:aﬂ:;is:onns, mEg (13a) is the projection of the signal f(x) onto a
. , the scaling function equals 1/r9
- pe o ) case, t ling n equals 1/r% on a compact
measure 7 and 0 elsewhere; Gaussian and otherwise variable “windows” have also been co[r):;fd::g:ipon

*This is the basis of the “spatial coberence” method d by C
i tial " m
Tecovering fractional cloudiness from satellite m:iances. veloped by ¥ and Bretherton (1982) for



110

and similarly in 2D. This translates to
1 *r-1
erx) =7 Y elx), rz1, (14b)

x'=x

in the discrete case where the small-scale £(1;x) field is defined on a grid with constant
£ =1; in other words, units of length where 1 = 1 are employed in Eq. (2) when used to
obtain &(1;x) from f(x). Generalization from 1D to 2D is again straightforward and, as for
the wavelet-based surrogates for the Af{r;x)’s mentioned in §3.2, efficient computation of
g(r;x) at appropriately selected x’s can be implemented in the framework of
multiresolution analysis (cf. graphics by Davis et al. (1994a)).

Having obtained the non-negative random numbers in Eqgs. (14a,b), we can take their
gth powers and average the results over x, the positions of segments or squares, to obtain!
(&(r;x)?) with the same advantages in terms of experimental “temperature” control as

discussed earlier for (IARrx)I%).

4. RESULTS (Power-Law Regimes and Scale-Breaks)

In this section, we examine the output of our laboratory “instruments.” These
“measurements” are a new —and highly compressed— form of data: statistical
quantities, always parameterized by scale. Typically, the scale parameter r or k spans a
large range of values and, in general, the statistics (e.g., E(k), {fix+r)—fx)l9), or {e(rix)T))
do too. The usual way of visualizing quantities with large ranges is to use log-log plots
and we naturally ask: Are there significant ranges of scale where log(statistic) is linear
in log(r)? This is often the case and they are called “scaling” regimes. In such regimes
the important parameter is the slope on the log-log plot, equivalently, the exponent in the
associated power law. In this section, we introduce notations? for a number of exponents,
present results for our cloud-related test data and discuss their most striking features.

4.1 Scaling in Spectral Analysis

Figure 4a shows octave-binned energy spectra for the five 1D datasets in Table 1,
partially illustrated in Figs. 2a—e. Log-log axes are used and the k-ranges are different
due to the different lengths of the datasets (Ly’s). We see good scaling in all cases, at
least for kn/102 < k< kn (last 7 octaves), with good agreement in the prefactors for 4 of
the datasets. The dispersion at small k (large scales) reflects the visual diversity of Figs.
2a-¢. The odd dataset is also the longest (L = 330 km, about a half of all the FIRE LWC
data), only an eighth of which is illustrated in Fig. 2c. Apart from the suspicious dip
visible in that figure (but not incorporated in our analyses), this data looks very smooth.
Spectrally, this translates in too ways: (1) the prefactor in the scaling regime is

!Validation of these computations and sensitivity studies with respect to amount of data can be performed
with the help of models presented in the Appendix, specifically in §A.3.
2Unfommately, there are several co-existing standards in the literature.

m

s1g1_uﬁcantly sqlaller than for the four other datasets; (2) there is a specific scale 1/k at
which Fhe Fourier modes stop increasing with scale and become constant. This is known
as alr;.“mteir:l’;l(comlation) scale, denoted R; we estimate R = 20-40 km.

1gure 40 shows our results for octave-binned E(k) for the fiv -nei
gradignt flelds associated with the LWC data anal(yz)ed in Fig. Zaaks&wngzﬁentzgth lt)t?;
behavior is somewhat more erratic than in Fig. 4a but still shows a reasonable correlation
betvls;c?en lof(l;) and logk for at least two decades in scale (=7 octaves).

1gure 4c shows the octave-binned estimates of the ensemble-aver:
LWC ﬁelds (fi(x), i = 1,...,5) and for their absolute small-scale gra::ljen:;g z;z‘)mfigg l;hi]e
(2) with i = ¢ (in this special case, the second subscript is unnecessary’). ,For both
Spectra, we see power-law behavior over no longer two but three decades (10 octaves) in
scale. In other words, the realization-to-realization variability in E(k) at large scales has
been damped'by the ensemble-averaging. Unfortunately,! the break at R ~ 20-40 km is
not apparept in the average data because it starts at k = 1/min{L;} where min{Ly} =~ 40
km according to_ Table 1. However, we are confident that the transition from increasin
to constant variance as scale increases (k decreases) will be consistently observedg
whethgr at 2040 km or more, as longer LWC datasets become available. This is because,
LWC is bounded on physical grounds: it is non-negative by definition with an upper
bound which Is a some small portion of the total amount of water vapor that the lawsp(e)f
thermodynamics allow a column of atmosphere to contain. This means that Fourier
::nﬁc:s:ts lcar}nacit be arbitrarily strong; a cut-off must occur when they reach the
elin m: gfﬁm:ﬁn bi,:’(gé;t:;rwme fluctuations overwhelm the dc (k = 0) component

The spectral scaling exponent Bin

E(k) ~ kP (15)

has quite different values for the two s of data: =1.4 for
assoc'iated e-fields; we discuss the stat?;gf:al significance of0 thlﬂsllllzfv:rf;u?: ?nz§0571 for the
_ Figure 5 §hows E(k) vs. k in log-log axes for the Lh. half of the Landsat i.rr;a e in
Fig. 3 In this case, there is so much averaging involved that octave-binnin isg not
required to reduce the statistical noise. We see a clear-cut break at the integrfl scale:
roughly constant Fourier amplitudes (B = 0) for scales larger than R = 20 km, There is.
also a break _at =(0.2 km, a scale we denote Nrs. Between 1/R and 1/, E(k). follows a
gpt:;ngrflfaw Wltlll) E‘= 2._0 :«%nd beyond 1,5 a steeper law, with an exponent in excess of 3,
ol te(;a.l;enua ility limit. In other words, small-scale variability is smoother than
'D:.avis et al. (1996b) investigate the scale break at th i ing i
radlauYe smoothing phenomenon mediated by horizont'rz‘ﬂrsphg?;uuc:nuzﬁor:tl:t;ni;tltzola
scatten.ng.” One outcome of this study is a simple expression for the “radiatiI:/e
smoothing” scale T in terms of mean optical and geometrical cloud properties. )

-

18 .

2A:cﬂ¢:use very long records are needed,. It is not always easy to estimate R in large geophysical systems,
€ very smallest scales (=60 m, twice the pixel scale), another flattening occurs due to digitization
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Figare 4: Energy Spectra of 1D LWC data. (a) Five
individual wavenumber spectra for the LWC datasets
listed in Table 1, using octave-bins and log-log axes.
(b) Same as (a) but for the absolute small-scale
gradient fields. (¢) Ensemble-average spectra from
the data in panels (a) and (), weighted by the overall
lengths in Table 1.

Figure 5: Energy Spectrum of 2D Radiance data.
Log-log plot of the wavenumber spectrum of the
Landsat data in Fig_ 3.
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4.2 Multifractal Analysis 1, Higher-Order Structure Functions

Figure 6a shows the ensemble-average log{ifix+r)~fx)I%) vs. logr for integer-valued

g =1,...,5 using the 1D LWC data as input. We note that by taking r = £, r = 2¢ (= 1/kn),
r=4¢, etc., up to r = min;= . 5{Lz;}, we obtain one more data point than with E(=1/r),

. namely, at the pixel scale £. This extra datum enables us to see some evidence of a break

. in the scaling at =2/—4£ (10-20 m). At any rate, we see the break at the integral scale

(i.e., R = 20 km) better than in the spectral data. Between these two limits, we have
| power laws for every g. Adopting the notation used in the turbulence literature, we have

(fx+r—fxd) ~ . (16)

Figure 6b shows {(q) vs. g for 0 < ¢ < 5. Muzy et al. (1993) have developed an elegant
method for estimating {(g) directly from the modulus of continuous wavelet transforms.

Figure 7a shows the scaling of the gth-order structure functions for the Lh. half of the
2D data in Fig. 3, showing good scaling between 1),s and R and where both the scale-
breaks, first characterized spectrally in Fig. 5, are apparent. (Here however, we would
significantly underestimate the integral scale R = 20 km by a factor of =2 due to the
saturation at fix) = 255.) Figure 7b shows the corresponding {(q) function.

We note the concavity! of {(g) and, since {(0) = 0 to ensure proper normalization, we
can define a non-increasing hierarchy of exponents:

Hg =42, a7

Data like ours yielding non-constant H(g), hence a non-linear {(q), is “multifractal” in the
sense of Parisi and Frisch (1985); otherwise (i.e., when {(g) =< g), it is “monofractal.”

Two values of g are of particular interest. At g = 2, we retrieve the scaling for the 2nd

order structure function; for power law statistics, the W-K relation in Eq. (11b) yields

(e.g. Monin and Yaglom 1975, p. 92)

B =2H2)+1 = {(2)+1. (18)

Incidentally, relation (18) is well verified numerically by our data, especially if octave-
bins are used in the spectral analysis (Davis et al. 1996a).2

At g = 1, we can retrieve the fractal dimension Dy of the graph of the data, viewed as
aset g= {xf(x)} embedded in d+1 dimensions (e.g. Falconer 1990):

Dg = (d+1)-H(1) = (d+D)~{(1). (19)

1 This property follows from characteristic function theory (cf. Feller 1971). The Fourier transform of the
pdf of a real random variable & is its characteristic function ¢(f) = {exp(it)). Non-negativity of the pdf
implies that ¢(iu) is real and non-increasing for real 4. By the same token, In¢(?), the cumulant-generating
function of &, is convex for purely imaginary ¢. Setting & = talf{x+r}-fx)! for fixed r and ¢ =iglnr, we see
from Eq. (16) that —{(q) is proportional to a cemulant-generating function, hence the concavity of {(q).

2This constitutes an internal calibration of the instrumentation in our data analysis lab; see Appendix for
external calibration procedures using standard input.
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We can therefore equate H(1), the “mean Holder exponent,” to the codimension of the
graph of the data. This quantity has natural bounds. If H(1) = 0, then Dg=d+]: the
graph fills a finite portion of R4+, If H(1) = 1, then Dg =d: the graph is as smooth as
the support R of x, namely, a Euclidian line or plane.

4.3 Running Means and Variances

Figure 84 demonstrates the practical importance of the integral scale R —a 2-point
statistical construct— for a 1-point statistic which is a priori simpler. We have plotted
U(rix) vs. r for 14 different non-overlapping 40 km sections from the LWC database.
Running means begin to stabilize only at » =~ 20 km, some to values quite far from the
ensemble-mean of 0.29 g/cm3 (beyond one ensemble-G). This tells us two ihings. First,
we need a stretch of at least one or two integral correlation lengths before we can even
talk about a mean, even locally. Second, this data is highly non-ergodic: no physically
attainable length of LWC data seems to be enough to reach a “climatological” average.!

Figure 8b shows G(r;x) vs. r for the same 14 sections, this time in log-log axes. The
striking feature is the jumpiness of running variance due to localized events, clearly the
intermittently distributed clusters of down-spikes in Figs. 2a,b,d,e; in one case, a factor
of =2 is gained even after accumulating for =30 km. Such jumps are very unlikely in a
process obeying Gaussian statistics. The r.m.s. ensemble-average, (o (rixN12, is also
plotted (bold dots): for r between 0.15 and 20 km, it follows a power law in 702, The
exponent is numerically identical to {(2)/2 = (B—1)/2m, not a coincidence: (op(rx)
should be of the same order of magnitude as ([j(x+r)—f(x)]2). Here again, no convergence
to the estimated ensemble-mean & (0.05 g/cm3) is in sight, even at r =40 km > R.

0.35 L 1 2 ¢

0.1 L .

‘LWC Lot
<l >4
= T < (b)

running maens, y (r;x) (g/m')

LWC data

¢ (14 segments) LWC data

(14 segments)-

running standsrd deviations, o,(r;x) (g/m')
o
2

S - ]
0 5 10 15 20 -~ 25 ';;' 3’5 v_:'0 0-0010.1 I' I'O
scale, r (km) acele, r (km)
Figure 8: Running Averages for 1D LWC Data. (a) u(r;
3X) vs. r for 0 < r < 40 km and 15 diffe i
separated by 40 km or more. (b) Same as (a) but for o(rx). Herentlocations

l . P . . .

We are in no position to c!alm.that 0.29 g/cm3 is climatologically relevant, not even for marine Sc in
summer off of southen} California (where FIRE was conducted in June-July 1987). Moreover, even for a
given cloud-type, location, and season, we have 5 means (also true of characteristics described below)
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4.4 Multifractal Analysis 2, Singular Measures

Figure 9a shows the spatial/ensemble-average! loga{e(r;x)?) vs. logar for integer-
valued ¢ = 1,...,5 and loga(rfy) =O,...,[min; - | ___sloga(Li/M)] using the LWC data in Eq.
(2) with n = 4/ (20 m) and then Eq. (15). For r 21, we have power laws for all ¢’s;
adopting the notation of Schertzer and Lovejoy (1987), we posit:

Erx)f) ~r k@ 20

for the gth-order moments of the coarse-grained measures. In Fig. 95 we show K(g)
versus g for0 < g<S5.

An often used alternative to the d-dimensional coarse-grained measure €(r;x) is the
total measure in the interval [x,x+r) or domain [x,x+r)®[x,x+r): :

p(rx) = re(rx). Qla)

In this case, sums —not averages— of the gth power of p(r;x) over the (Lp/r)? disjom
intervals are used:

Z(g) = 2prxyy ~ D, - Q1)

where (-) now designates an (optional) ensemble-average over different realizations of €
By separating spatial and ensemble averages in (20) (Lo/NXe(rx)?) = r'dqz,(p(r;t)").
Hence, from Egs. (20) and (21b), we find x

Uq) = (¢-1)d—K(q). (22)
Methods for estimating T(q) using continuous wavelet transforms have been developed by
Arnéodo et al. (1988).

Two K(q) values are predetermined. Normalization requires K(0) = 0 (t(0) = —d).
Only at g = 1 can we permute the spatial averaging inside the interval [x,x+r) and the
spatial average over the various x’s. In the convention where x is sampled every r, there
is no difference in the outcome as r is varied: K(1)=0 (¢(1) =0).

We note the convexity of K(q) in Fig. 9b, the associated T(g) being concave. This
remarkable property is traceable to the same probabilistic cause as for {(g)’s concavity.
Here again this can be used to define the non-increasing hierarchy of exponents:

q) K@q)

D@)=,S=d~ T, (23)
the generalized dimensions introduced originally by Grassberger (1983) and Henchel and
Procaccia (1983) for the characterization of strange attractors in deteministic chaos
theory.2 Some dimensions are noteworthy; in standard terminology, we have:

1Itiscustomm'y to resample x every r (from 0 to Ly—) in the spatial part of the averaging procedure; this
guarantees that no data is used more than once for a given statistic.
21n that context, p(r;:x) is the number of points sampled in the phase space of the dynamical system.
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¢ D(0*) = d+K(0*) = 1(0*), dimension of the support;!
¢ D()=d-K'(1) = v’(1), information dimension;
; D(2) = d-K(2) = 1(2), correlation dimension,
t ¢ = 2, the scaling of (g(x+7)e(x)) can be related to that of (&(rx)2 K
=2,th 3%)2) ~ r—K(2), at least for
multiplicative cascade models (see Appendix, §A.3.2). From the law i
of the Fourier duality in Eq. (9b), we have ‘ pover-law translation

Be = 1-K(2) = 1-[d-%(2)] = (1-d }+ D(2). 24)
A fourth g-value was attracted considerable attention:
°* D(gp)=0ort(gp)=0or K(qp) = (gp—1)d define the “critical” moment gp.
For q 2 gp, the moments of &(r;x) are divergent (Mandelbrot 1974, Kahane and Peryiére
1976, Sch.ertzer and Lovejoy 1987, Gupta and Waymire 1993, and others).
_ Data like ours, yielding a nonlinear K(g) hence a non-constant D(q), are “multifractal”
in thc'T sense of Halsey e al. (1986), Meneveau and Sreenivasan (1987a,b), Schertzer and
Lovejoy (1987), Evertsz and Mandelbrot (1992), and others. If D(q) = con:staut K(q) and
(q) are proportional to g—1, and the data are said to be “monofractal.” o
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Figure 9: Singular Measures for 1D LWC Data. (a) Scaling for q=1(1)5. (b) K(g) exponents.
4.5 Bi-Fractal Analysis

Is it strictly necessary to have two kinds of multifractal analyses? Tn other words:
lthere a general connection befween 8(q) and K(g)? This is an open question discusnsi:;i ::
engtl.x in the specialized literature (Schertzer and Lovejoy 1987, Meneveau and
Sreenivasan 1991, Sreenivasan 1991, Frisch 1991, Davis ef qi. 1993 ’Vainshtein etanl
1994), the consensus being that at least one extra exponent is need;d to go from ;1:;

1,-0+ i
q=0 meansﬂnte(r,x)>ngvslande(r,x)=Ogivcs 0. Note that X(0%) <0, due to convexity.
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currently fashionable K{(gq)-based approach to the more traditional one based on structure |

functions and {(q). Let this exponent be

Hy = H(1) =§(1); (25a) (0 1)
H

Bertozzi and Chhabra (1994) show that x = 1—-H is the “cancellation™ exponent recently
introduced by Ott et al. (1992) to measure the rate at which fx) goes from an up-trend to
a down-trend. We prefer to view the (mean) Holder exponent Hy as an index of J

ALWC'I ALWE?>

Ci1=0.2

1004

nonstationarity: the degree of nonstationarity increases with Hj, ranging from 0 b

(stationarity) to 1 (differentiability).!
Another question of practical importance is: How many q’s do we actually need in ]

any given application? 1t is impossible to answer this question on general grounds.

However, we consider it important in any application to get at least a first-order estimate

of the degree of intermittency in the system. Using the small-scale absolute gradients is a ;

convenient way of doing this and a 1st-order index of intermittency is the information 0

codimension

Bo

N0

H1-=0.3
Ci=d-D(1)=d—(1)=K(1). (25b)

At C; =0, there is no intermittency. At C; = d, intermittency is maximal, corresponding
to a situation where all the measure is concentrated onto a finite number of points (cf.
Dirac measures in the Appendix).
Relations of the type 0 L il
C(Q) = g/a—K(q/b) (26) o 10 20 (km)
have been proposed where a and b are constants. For instance, a = b = 3 for turbulent more differentiable — H-l
signals (e.g., Sreenivasan 1991) and a < b for a model of Schertzer and Lovejoy’s (1987)
described in the Appendix. The generality of this {(¢) <> K(g) connection remains an I I [ l l I
open question.2 If however Eq. (26) is either true in general, accepted as an (0’0) (1 ,0)
approximation for low enough ¢’s, or used as a definition of K(-) after setting b, then one

can derive both Hy and C) from structure functions alone, without resorting to measures ’ S
based on gradients. Indeed, Eqgs. (25-26) yield

{H1 = {(1) = Va-K(1/b) -t {Hl ={(1)=Va -

Ci =K'(1) = ba-bL(b) = L(b)-bL’(b) C1=K(1)= L)L 1) @n
Notice that if {(g) = ¢, then K(q) =0, hence C; = 0; so C; is a measure of the curvature
in{(g). As an example, we obtain C; = 0.06 in this manner for the 2D Landsat data using
b = 1 for simplicity (cf. Fig. 7).
“Bi-fractal” analysis is the minimal form of multifractal analysis based solely on H;

and C;. [Davis and Marshak (1996) discuss, compare, and relate other choices used in _

the literature.] Figure 10 shows a schematic (H;,C)) plane for d = 1. In our experience
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with marine Sc, bi-fractal analysis has proven very useful, leading in particular to new Figure 10: The Bi-Fractal Plane. This schematic shows how the vertical coordinate reflects the

mterm:tt?ncy of the squared small-scale gradients (lower inset) whereas the horizontal coordinate

IIn §5.1 we will show that processes with f§ < 1 are stationary; those with 1 <P =2H(2)+ 1 < 3 are characterizes the nonstationarity of the primary signal (upper inset). Synthetic data with increasing C, and
nonstationary with stationary increments; those with B > 3 are almost everywhere differentiable and have Hy grace the axes. We sec that, contrary to spectral analysis, bi-fractal analysis distinguishes Bgm i

nonstationary increments. Since H(2) < H(1) = H,, we have 0 < H, < 1. motion, (H,,C;) = (1/2,0), from Heaviside steps, (H;,C;) = (1,1), which are both nonstatio (Hw:lf)n

2A methodology for empirical verification is suggested by Davis ef al. (1993). The same is true for the stationary (H; = 0) gradients of these two theoretical cases: wtl::t:ynoi;,c ha:.

(H#1,C1) = (0,0), and a single spike, modeled by a 5-function, has H,,Cy) = (0,1).
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insight into cloud dynamical processes. Table 2 gives (H;,C;) coordinates for the data
presented in section 2.

Table 2: (H,,C)) values for FIRE Landsat radiances and LWC, ASTEX and SOCEX LWC, and ARM LW
path data.

Database (dataset) H, C, T'min / Tmax Reference
t radiances (6/30 054 006 150 m/10km (this publication)
ﬁ mdcs?mo 22:41é) ) 029 0.4 20m/20km  Marshak e't‘aL (1“996)
FIRE LWC (7/02, 02:23Z) 022 015 oo no
FIRE LWC (7/14, 23:09Z) 034 003 » " ”
FIRELWC (7/16, 17:17Z) 031 008 o . "
FIRE LWC (7/16, 18:19Z) 034 007 oo ,

FIRELWC 1987 ensemble 0.28  0.10 i
ASTEX LWC 1992 ensemble  0.29 0.08 60 m /60 km Davis et aL‘(l994a)
SOCEX LWC 1994 ensemble  0.28 0.09 S5m/5km (in preparation)

ARM LW path ensemble 0.37  0.08 1 min/8 hr Wiscombe et al (1994)

The scatter, most notable in the intermittency index, reflects the diversity in Figs. 2a—
e and argues for a non-ergodic model for this data. FIRE was conducted off the coast of
Southern California, near San Diego. We have added to Table 2 (H;,C)) entries for
ensemble averages from analyses of LWC in marine Sc for two other field programs: the
Atlantic Stratocumulus Transition EXperiment (ASTEX) that focused on a more complex
situation with transitions to cumulus regimes, and the Southf’.rn Ocean Qon_:pled
EXperiment (SOCEX) that was conducted off the coast of Austra.ha: The proximity of
the ensemble average (H;,Cy) points for the three differt_ant local climates argues for a
degree of universality in the dynamics that determine the m.ternal structure of marine Sc.
The H;’s for LWC cluster near 1/3, the value that characterizes turbulent fields: . velocity
(Kolmogorov 1941), temperature, and passive admixtures (Obukhov 1949, Corrsin 1951).
The Cy’s for LWC cluster near 0.1, precisely in the range observed 'for turbul?nt
signals.!2 Thus, although H2O (in all its phases) is far from being a dynamlcally' passive
constituent of the atmosphere, it can be perceived as advected by the turbulent wind field

Ximation.

° agl:z:llaipvl; have appended to the above LWC statistics an ensemble-av_era'ge (H1,C1)
for liquid water path (column integrated LWC) measured at the ARM site in Lamont
(Ok.) for arbitrary cloud cover, as opposed to Sc only. We find xjou'ghly the same C‘l but
a somewhat larger H) than for the three LWC observations. This is not surprising: the
vertical integration that relates LWC to LW path will pfoduce a sxpoother signal. LW
path is more directly relevant than LWC to the radiative properties of the cloud, as

1€ values can be obtained from “intermittency parameters,” K(2), gleaned in the literature. To go from
the characterization at ¢ =2 to ¢ = 1, two extreme hypotheses are log-normality, K(q)‘= Ciq(g-1), and
monoscaling, K(¢g) = C1(g—1). Allowing for this uncertainty (C)/K(2) = 1-2), soC} fal'ls in 0.2.—0.3.

21n turbulence studies, the dissipation rate field is obtained by squaring the \'relocny gradlen‘ts at the
Kolmogorov scale, leading to Kx{(g), rather than taking their absolute values, leading to K,(g), a dlfferer!c;
in methodology easily accounted for: Lavallée et al. (1993) show that K;(q) = K2(g/2)4K,(1/2) whic
puts C1 = K;"(1) in the range 0.07-0.15.
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observed in the Landsat image. The H; for marine Sc radiance fields in visible channels
is even smoother than for LW path because the escaping radiation fields are highly
scattered. Davis et al. (1996b) show that multiple scattering leads to a non-trivial
physical smoothing over scales =200-300 m, and Marshak et al. (1995b) use multifractal
analysis to show that this smoothing affects large and small jumps in the horizontal
distribution of LW path differently.

S. SEMI-EMPIRICAL CRITERIA (Statistical Interpretation of Scaling Regimes and
Exponents)

In this section, we state or establish some results, typically inequalities between
exponents, that enable us to classify data as stationary or not, ergodic or not, intermittent
or not, according to the scaling behavior of various statistics. The same data can have
conflicting attributes (e.g., stationary and nonstationary) as long as they refer to different
ranges of scales. From a statistical standpoint, it will become apparent that Stationarity,
ergodicity, and intermittency are just different facets of the basic issue of data analysis:
What properties should we determine Jrom our data? and How accurately can we
estimate them from our finite sample? From a physical standpoint, stationarity and
intermittency are clearly more fundamental concepts than ergodicity.

5.1 Criterion for Stationarity (A Necessary Condition for Ergodicity)

In the Appendix, we describe procedures for synthesizing a number of scale-invariant
models for stochastic processes and discuss their properties, among these “stationarity.”
This body of theoretical knowledge is important for a variety of reasons. First, models
enable validation of analysis software —“instrumental calibration” in our laboratory
analogy— as well as sensitivity studies (how does the output depend on the amount and
properties of the data being processed?). Second, models can be used in applications
(e.g., cloud radiation studies). Last but not least, models generally have well-understood
properties. Strictly speaking, stationarity is a property that can only be assigned to a
model because the question is: Are statistical quantities, as defined by ensemble
averaging (i.e., over probability- or f-space), invariant under transiation in x? This is
not easy to address with data because we always operate with finite amounts of data;
furthermore we rely heavily on spatial averages to estimate statistics in the first place, so
at least some x-dependence is operationally erased.

Another theoretical question, more directly relevant to data analysis, is that of
“ergodicity:” Do spatigl averages of increasing length for a single realization converge
to ensemble averages (over all possible realizations)? In data analysis we generally
make implicit ergodicity assumptions before computing spatial averages, i.e., we expect
them to converge to something meaningful. We also assume implicitly that this definite
number we are seeking does not depend on when we start computing it (stationarity). It
is therefore important to have guidelines as to what quantities are statistically well-
defined, not just computable by some given algorithm,
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Without exception, the scale-invariant models in the Appendix with
B<1 (28a)

are stationary in the “broad” sense where G(r) = ((fa+r=AIfx)f1) depends only on r;
we recall that, in this theoretical context, the 2nd-order autocorrelation function is
obtained by averaging over all possible (or at least many) f’s, holding x constant. Davis
et al. (1994b, 1996a) give more general arguments for drawing the line between
stationary and nonstationary behavior at B = 1 for scale-invariant processes.
If we only have
B<3 (28b)

then the model has (broad-sense) stationary increments: {[fix+r)fx)) = G(r)+(f)2, and
even {f(x)), may or may not depend on x but the structure function of order g = 2, namely
([f(x+r)—ﬂx)]2), does not. We propose to use the criteria in Eqgs. (28a,b) for real world
data-streams as well as for theoretical models. For data, p > 1 means that spatial
estimates of {fx+r)f(x)) are likely to vary from one realization (or portion of data) to the
next. For data, p < 3 means that spatial estimates of ([ﬂx+r)—ﬁx)]2) are likely to be
robust (i.e., invariant under addition of new data).

In this scheme, the FIRE LWC data (B = 1.4) in Figs. 2a—¢ is nonstationary with
stationary increments for scales from =20 m to the integral scale =20-40 km. For larger
scales, we have no spectral information in Fig. 4c but the leveling-off of the structure
functions in Fig. 6a confirms this estimate of the integral scale. This is symptomatic of
stationarity (increments cease to grow). The FIRE Landsat data (P = 2.0) in Fig. 3 is also
nonstationary with stationary increments from the radiative smoothing scale =200 m to
=10 km. Were it not for saturation at maximal gray level 255, spectral flattening
(transition to stationarity) would occur closer to the integral scale for the cloud LW path
fluctuations, itself likely to be around that of LWC.

In contrast, the g(1;x) fields in Figs. 2a’-¢’ (B =0.7) are stationary in spite of their
intense spikiness. This may seem surprising since local means, g(r:x) with r >> 1, will
fluctuate wildly, depending on the strength and number of spikes that fall in the interval
{xx+r). The strong variability of these fields therefore contrasts with the conventional
wisdom about stationarity, essentially that (in the usage of time-series analysis)

‘temporal statistics do depend-little on when they are gathered.’ (*)

The occurrence of spikes of course perturbs strongly the local statistics and therefore
violates this operational definition of stationarity. We prefer to think of property ( *¥)asa
consequence of ergodicity (which is more restrictive than stationarity): if, in general,
running temporal averages converge reasonably fast to their ensemble counterparts as the
sample size increases, then clearly we need not worry about where we start cumulating.
The two unstated assumptions in effect here are:
1) 1-point statistics are Gaussian-type, i.e., that only relatively small deviations from
mean or modal values are anticipated;
2) 2-point correlations are of short range, i.e., the integral scale is relatively small.
Samples of relatively small length therefore provide enough data to obtain accurate
estimates of 1-point and 2-point statistics of all orders.
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In our outlook, stationarity should have no bearing at all on the i i
fluctuations; it should however have a strong impactg on their “rapitllliltt’['ls(lgn:: $:
smaller the spectral exponent the more variance in the small scales). In short, we propose
to. drop the above assumption #1. Even in strongly intermittent cascade processes €(x)
with {g) = 1, spikes (where &(x) >> 1) do not prevent the signal from

‘having a well-defined mode,’ )

(which is naturally « 1). Property () is, in our opini ipti
. ; ) . 3 pinion, a better descript
stationary time-series, whether Gaussian/ergodic or not.! cription of a

5.2 The Onset of Sampling Problems (Trivial Ergodicity Violation by Finite Datasets)

It_n the above considerations, only 2nd-order statistics are u and we

data is er_godic for that type of statistic (dominated by relativesl;d,ﬁ'equent :rzl:lltl:; thC;a:(t)itxl:‘:
to ever hlgher—f)rdcr moments, extreme events gain more and more weight. In es;imatori
based on a fu.:ute amount of data, a single event will eventually dominate. This can be
sensed in scaling analyses when the exponent functions, £(q) or K(q), become linear in
This is a gradual transition but one can nevertheless define gs such that *

L'(q) or K'(q) = constant for q > gs.

Schertzer and Lovejoy (1992) derive an expression for gs in the frame i
gasures. Now some singular cascade models for e(r;x) (g.g., “p-models” d‘i)sfczlszigl?;
. Apl.)endlx)' are immune to sampling problems yet their K(g)'s become asymptotically
lmefu' in g, s1mply.because there is a well-defined maximal event present in every
realization. In practice, one can easily test the hypothesis of obtaining roughly the same
max,{e('r;\:)} fqr every realization. So, in principle, there is no risk of misinterpreting the
obse[;vguor‘x}:)f linear trends in K(g), at least for models. *
sing the FIRE LWC data, Figs. 6b for {(q) and 9b for K(q) are quasi-li
a2 3, 'whxch is our estimate for gs. The {(q) in Fig. 7b for the%IRE 1"ladifmc;.1 il::t:(;;
quite linear for small ¢’s (see below) but does not show an asymptote for large q.

53 Criteri ., , . T
esse:)rwn Jor Intermittency (Non-Trivial Ergodicity Violation by Non-Gaussian

Suppose we want to model data (or the i i i

; . : geophysical field it samples) with the simy

possﬂa!e scale-}nvanant stochastic process. A question naturally arises: ‘Is a Ef:f

Gaussza;;, mulufrqetal model strictly necessary or is a simpler monofractal one good

‘e;n.ough’.’ Fgcusmg on gth-order structure functions in Eq. (16), we find mono- (or

t;:nmi;s)le ) scaling —namely, {(g) = {(1)g— as soon as the trivial dimensional reasoning
(a+r—foolf) = {flx+r—faons, (29a)

1 A . .. .
random sample is, by definition, dominated by modal values and will general ive good
. e is s ; generally not give i
of high-order statistics, even of the mean if the distribution is sufficiently broad oz ske\f;d. good estimates
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makes accurate predictions. Similarly, for singular measures, we would have

(erx)?) = (e(rx)?, (29b)

hence K(gq) = K(1)g =0. We have argued above that, for all practical purposes (i.e., a
finite amount of data is available), Gaussian-type increments flx+r)—f(x) or e(x) fields will
indeed yield good estimates of relatively high-order moments that obey (29a,b). This
type of data can be deemed “ergodic” and is necessarily non-intermittent in the sense that
K(q) is vanishingly small. It is therefore important to give a quantitative meaning to the
“=" symbols in Egs. (294,b)?

In theory, fractal and multifractal properties require a small-scale limit (r->0) to
become mathematically precise. In practice, multifractal analyses are performed with
finite amounts of data with a finite range of scales. There will almost! always be trivial
ergodicity violations based on extreme events, as described briefly in the previous
subsection. In turn, these events lead to a small but finite degree of multiscaling. Can we
distinguish between this spurious multifractality and its “real” counterpart (i.e., that is
likely to be robust under addition of new data)?

This exercise in ergodicity verification normally requires either obtaining more data
or subdividing the available data and re-doing the analyses in order to monitor the effect
of sample-size. Aurell e al. (1992), Marshak et al. (1994), Eneva (1994), and others
have explored this sampling issue analytically or numerically with specific models that
yield K(q) = O in the small-scale limit but K(q) # O for a finite range of scales. Grivet-
Talocia (1995) and others have investigated finite-size effects that cause stationary
scaling processes with B < 1 to have small but finite {(1) and {(2), in contradiction with
Eq. (18), let alone {(g)= 0. A general (model-independent) first-order answer to the
above guestion is now derived from the hypotheses in Eqgs. (274,b).

Let E(r;x) = Iftx+r)—Ax)| or &(r;x), depending on the multifractal approach of interest.
Equations (29a,b) become

BNV = (Erox) o) e, (30)

For specificity, we can take gref = 1 but in some applications gref = 2 would be a natural
choice. In the following, it is assumed that some range {gmin, gmax] is explored for a
number of scales, ranging from rpyjn t0 rmax- TO make the “=” sign in Egs. (29-30)
quantitatively meaningful, we just need to make sure that there is minimal information in
the prefactors on g-dependence. There often is (cf. Figs. 6a and 7a), but of a trivial kind,
just reflecting a poor choice of units. It is easy to select physical units for £ that remove
this trivial dependence for singular measures: by normalizing €(r;x) so that the
r-independent statistic {(€(r;x)) is unity (cf. Fig. 9a). For structure functions, there is no
r-independent case but we can always choose units that make (fx+rpa)—f)%ef) = 1;
then, if there is little statistical information on g in the prefactors, the same should be
approximately true in general: {If{x+rma)~f(0)I9) = 1. Visual inspection of log-log plots
of (E(r;x}?) vs. r is enough to show that this is possible: the intercepts of regression lines
should be approximately linear in g.

1We exclude models that are cunningly ergodic in the sense of one or the other of the multiscaling statistics
(cf. “p-model” in the Appendix for singularity analysis).
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Using the definitions in Egs. (16) or (20), we can rewrite the constraint for
monoscaling in Eq. (30) as (+/rpax) @ = (7/rpa A @ref where

AG) = { 8(g)/q = H(q)
D= ~K(g)lq = t(g)/g+(1/g-1)d = (1/g-1){d-D(q)] - G

In the (lower) singular measures case, A(g) is a new non-increasing function.

Now we must decide at what degree of discrepancy in Eq. (30) we are compelled to
take multiscaling into account. There is no universal answer for this at present; in
particular, the number of samples will be a factor. However, there is a general consensus
that mu_ltifractals are a framework for modeling “strong” variability. It seems reasonable
to require that the ratio between both sides of Eq. (30) be less than, say, one order-of-
magn_itu(.ie or more at the opposite end of the range of scales from where their
quantitative agreement can be imposed arbitrarily, simply by using the proper units. We
did this at r = rp,y, so we will now focus on r = rmin- Conversely, we can require that
bone fide multiscaling data obey

G U ) et | i, = (i M@ i/ rmaed > B (32)

whefe B is an arbitrary but relatively “big” number, like 10 or 100 (depending on the
application, amount of data, etc.). Taking logs in Eq. (32) yields

,
10g(;22%) A(q)l (> logB. 33)

The chance of passing this test is clearly greater if (i) the range is scales Tmax/Tmin 1S
increased, or (ii) the range of ¢'s is increased.

' We: now restrict our attention to singular measures with which we characterize
Intermittency routinely. The criterion in Eq. (33) can be translated into another for C if
we make an assumption on A(q), hence K(g). For small enough values of q, the log-
normal model, K(¢)/C; = q2~q (cf. Appendix), is a reasonable fit to our generally
parabola-shaped K(q) curve (e.g., Fig. 95); we can therefore take A@)C = 1-q.
Com‘t?ining this simple expression with the inequality in (33) and maximizing the range
of g (i.e., ¢ = gmax Gref = gmin), this A(g) function yields a simple —erring somewhat on
the cgnservative side— criterion where we can isolate C; as the only data-dependent
quantity, the others being essentially instrumental: the data is “truly” multifractal only if

R} 10gB/108(Fmax/romin)

~

(34

9max—qmin

Wc have rmax/rmin = 103 for most of the entries in Table 2. The denominator in the r.h.s.
is 5; taking B = 10, we require C; 2 0.07 to qualify the data as truly multiscaling. One
ca.se.(FIRE LWC on 7/14) fails the multifractality test; being so exceptionally smooth,
this is not a surprise. The others cases pass, although one just border-line. ’

We {Joted already that the {(q) results in Fig. 7b for the FIRE radiance fields are
alfnost 'lmear in g for small enough g (say, 0 to 2.5). Can we argue for multifractality
with this data? In this case, we have Fmax/Tinin = 102 (this is a somewhat conservative
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estimate because of the large-scale effect of radiometry saturation). Values of A(q) for
Gref = 1 and gmax = 5 are A(1) = {(1) = H; = 0.5 and A(5) = {(5)/5 = 2.0/5. Using base 10
logarithms, the Lh.s. of Eq. (33) is therefore =2+x(0.5-0.4) = 0.2+, much less than the
r.hs. for B = 10. This argues for a monofractal model for this data. Surprising result
since we have good evidence of multifractality in the associated LWC fields which are
representative of the fluctuations of the extinction (photon scattering probability per unit
of length) in the cloud. Numerical simulations by Marshak et al. (1995b) explain this
paradox: multiple scattering processes smooth the large jumps in extinction more
effectively than the small ones; the latter determine H; and the former, the higher-order
moments of the increments.

6. THEORETICAL CONSIDERATIONS (Geophysical Data Analysis as a Problem in
Statistical Physics)

Experimentation is generally conducted in the laboratory with a theoretical model in
mind, a hypothesis to test. At the level of generality that we have adopted in our survey
of multifractal data analysis techniques, the most pressing theoretical questions are: ‘Why
is scaling almost universally observed in geophysical signals and fields?’;, and ‘What can
we learn about the underlying physical processes from the scaling properties?’.

6.1 Thermodynamical Interpretation of Multifractal Quantities

In §3.3 we likened the statistical parameter ¢ with a standard one in experimental
work, namely ambient temperature. In the same vein, there is an increasingly popular
interpretation of all multifractal exponents as thermodynamical quantities, first explored
by Feigenbaum (1987) and recently surveyed by Muzy et al. (1994). In particular,
diverging moments (important for modeling ergodicity/sampling problems) are perceived
as lst- or 2nd-order phases transitions, their signature being a discontinuity in the 1st- or
2nd-order derivatives of the “equilibrium curves” {(q) or K(q); see Schertzer and
Lovejoy (1992) for a discussion in the frame of singular measures.

There are solid physical reasons for exploiting this formal analogy. Indeed, the
current rationale for using scaling analysis is that geophysical systems by nature have
very many interacting degrees-of-freedom. We can think of the number of computational
cells required to solve the coupled PDEs for Navier-Stokes equations, generally with
ancillary constraints, for very high Reynolds numbers. In this respect, we imagine the
generally large, complex geophysical system under consideration as a thermodynamical
one: it has many allowable configurations in the sense that all the microscopic variables
can each take on a number of values. Two classic examples are: positions, linear- and
angular momenta of molecules in a gas; spin values of atoms or domains in a magnetic
material. This defines a vast probability space, impossible to describe in any kind of
detail. However, the macroscopically observable quantities are few (akin to temperature,
free energy, entropy, magnetic induction, etc.) and are defined by ensemble-averages
over all possible microscopic configurations. These “observables” generally depend little
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on the detailed dynamics of the system and thus define universality classes (e.g., real
gases, Ising models). The counterpart of the thermodynamical limit in statistical physics
(i.e., very many interacting particles) here is the limit of a huge computational grid (hence
a large range of scales) and we again expect some kind of universal behavior to arise.

6.2 Information Created by Breaking the Scaling Symmetry

Scaling can be viewed as a symmetry (or invariance) obeyed by the macroscopic
geophysical system probed during data collection. In this case, we are dealing with an
invariance under change of scale. There are other possible symmetries: “stationarity”
(§5.1), invariance under translation; and “isotropy” (§3.1), invariance under rotation in
2D,_ time reversal or parity (x — —x) in 1D. Of course these symmetries are all of a
statistical nature since exactly translationally and rotationally symmetric fields are
constant. Generally speaking, the more symmetric the system, the less information is
required to describe it. In our case, similar statistical properties for a whole range of
_scales are described by a single exponent (and a prefactor). It can be argued that
.mformation about any system can be gained only by breaking its symmetry. For
Instance, to measure the circumference of a circle, a mark must be placed somewhere
(thu§ breaking its rotational symmetry). The first and last points in a time-series are
special with respect to translations (a degree of nonstationarity is therefore introduced).

_ Our experimentation with cloud data has confirmed this. In discussing Table 2, we
highlighted the similarity of g = 1 muitifractal exponents for the same type of cloud
(marine Sc) at three different locales (FIRE data from the N-E Pacific, ASTEX data from
the Mid-Atlantic, SOCEX data from the S~W Pacific). So a “bi-fractal” characterization
tells us nothing about the local climatology; it does tell us however something about the
uni\{ersality of the thermo-hydrodynamical processes that shape the internal structure of
marine Sc layers. In contrast, the scaling range, which is defined by scale-breaks at either
end, does vary; it appears to be roughly in proportion with the thickness of the boundary
layer (Davis ef al. 1996a, Marshak et al. 1996).

From the cloud radjative perspective, the most interesting scale-break is the one at
=200 m in Figs. 5 and 7a relating to the reflected radiance fields of marine Sc. Indeed.
there is no counterpart of this statistically robust feature in the LWC data measured insidé
the same type of cloud. Davis et al. (1996b) survey the literature on this scale-break in
-the energy spectrum and they describe the radiative smoothing mechanism that produces
ft' via multiple scattering. Marshak ef al. (1995b) use multifractal methods to investigate
its implications for cloud remote sensing. In both studies, the phenomenology of the
Landsat scale-break is based on a numerical Green’s function analysis of horizontal
photon transport, uncovering its dependence on geometrical cloud thickness and photon
mean free path (corrected for the forward scattering): the scale-break occurs at the
harmon.lc mean of these two fundamental scales.! Information about inherent cloud
properties can therefore be extracted from the observation of the scale-break. Moreover,

1Inu:restingly this finding i i i
A g is traceable to the effect of the non-illuminated cloud boundary at finite range on
the photons’ random walks that are modeled by nonstationary Brownian motion (cf. Appendix). g
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it is hoped that in the near future laser and low-light detector technologies will be
combined to observe directly cloud radiative Green’s functions. This would enable
robust and inexpensive estimations of cloud thickness and density, both important
quantities for balancing the Earth’s radiative budget, hence forecasting climate change.

7. Summary

We have presented a conceptual model for geophysical data analysis based on
laboratory work. The “sample” being probed is the data, generally collected in the field:
either time-series, 1D transects, or 2D images. The laboratory “instruments” are
computer codes that process this data and output 2- or more-point statistics, our focus
being on scale-dependent statistical quantities that convey information about spatial
correlations. The “readings” of these instruments are analyzed on log[statistic] vs.
log[scale] plots, seeking straight lines that are the signature of scaling (power-law)
regimes. A number of remarkable exponents (log-log slopes) are discussed and several
criteria are presented: When is the datastream stationary? ... When does it have
stationary increments? ... Do we suffer from sampling (“ergodicity”) problems? ... Is
there enough intermittency to call for an inherently non-Gaussian “multifractal” model,
as opposed to a simpler Gaussian one with “monofractal” statistics? Finally, laboratory
exercises are almost universally designed to validate or challenge the prevailing theory
about the structure and dynamics of the sample. Experimental results can therefore
prompt new theory. We show how this proves true in both cases for the theory of cloud-
radiation interaction, an important pre-requisite in climate theory and the remote sensing
of cloud properties. We therefore conclude that multifractal scale-by-scale analysis is a
powerful —yet currently underexploited— tool in geophysical research, well-suited for
connecting theory and measurements in a broad range of applications.

Appendix. SIMULATION AND CALIBRATION (Scale-Invariant Models:
Stationary or Not, Intermittent or Not, Ergodic or Not)

An important, quasi-universal application of statistical data analysis, multifractal or
other, is to constrain models that attempt to reproduce the data. So stochastic simulation
tools are often developed in parallel with data analysis methods. This activity has both
analytical and computational aspects. On the one hand, we need to write code that
implement specific algorithms for generating random functions of one or two variables.
On the other hand, we need to know, preferably in closed-form, the dependence of the
statistical quantities of interest on the parameters of the model. In our experience,
applications are two-fold:
 Stochastic cloud models have proved invaluable for investigating cloud radiation

properties (e.g., reflectance, transmittance, and absorption of solar- and laser beams).
+ Validation of data analysis algorithms: before applying them to real data, it is crucial

to see how they respond to artificial data.
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In the “laboratory” analogy for data analysis used in this paper, the “instrumentation” is a
collection of computer programs that process the data-stream into statistics (large input,
small output). Others will help fit nonlinear (e.g., power-law) models to the statistics in a
more or less supervised manner. Just like real experimental procedures, these instruments
must be calibrated with standard input, in our case, samples of data with known and
controllable statistical properties.

In this Appendix, we present a comprehensive collection of theoretical models to
perform this task. Simultaneously, the somewhat abstract concepts of stationarity and
intermittency are made more palatable. On the one hand, we need both mono- and
multiscaling nonstationary random functions with stationary increments to calibrate
structure-function analysis. In section A.1, we recall how the simplest nonstationary
processes are obtained from white noises in both ergodic and non-ergodic situations; in
section A.2, we describe monoscaling fractional Brownian motions. On the other hand,
we need stationary mono- and multiscaling random measures to calibrate singularity
analysis procedures. In section A.3 such models are presented. In section A.4, we return
to nonstationary functions to add two multiscaling models, both developed first for cloud
studies, that complete the collection. In section A.5 finally, we summarize and display
graphically connections between the different types of model.

Here again, we are dealing with a number of computer programs that synthesize data
(small input, large output). This output is denoted w(x,y), Axn) or €(x,;) on a 1D grid of
constant £ and size M = L/{:

Xm=mé, m=0,.. M1 (AOa)

Generalization to 2D grids,
(%mypYmy) = (m,m2)¢,  (m1,m2) = [0,M-1]®[0,M-1], (AOb)

are straightforward in most cases, at least if statistically isotropic models are acceptable.
In one (more involved) case, the 2D construction is described in full detail (§A.3.5).
Where convenient, we denote spatial dimensionality by

d=12. (Al)
Unless explicitly stated otherwise, we use units of length where
£=1. (A2)

For each model, we describe the generation algorithm in sufficient detail for direct
coding; the main statistical properties are expressed as a function of their parameters,
with either short derivations or references to the literature, and their stationarity,
intermittency and/or ergodicity properties are discussed.

A.1 Nonstationarity in 1D, Running Sums of Stationary Processes
A.1.1 Gaussian White Noise and Brownian Motion

‘Brow.nian motion (Bm), a.k.a. the Wiener-Lévy process, is defined as the integral of
white noise (w.n.), i.e., the running sum of a sequence of uncorrelated “steps” in the
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forward or backward direction: the steps are denoted w(x,,), m = 1,...,M. These numbers
are typically drawn from a Gaussian distribution but Bernoulli! and Laplace?
distributions are also used. Throughout this Appendix, we denote by N(L,6) Gaussian3
random variables of mean | and variance 62 (standard deviation ¢). The important
requirement is finite variance to invoke the central limit theorem (CLT). For simplicity,
we also require the vanishing mean to eliminate systematic drifts; so w{x,,) = N(0,0).

Bm is therefore

FOtm) =fo+2Tw(x;), no sum for m = 0. (A3)

If w(x,,) is Gaussian —or, more generally (CLT), in the limit m > 1— f{(x,,) is Gaussian,
and so are its increments Af(r;Xm) = fOtmer)km ) = 2immw(x;), where m = 0,...M—r and
r=0,....M, because sums of Gaussians are Gaussian (with cumulated means and
variances). It is easy to see that (ARrxm)!%) = (ARrx)?) o= (Rx)~fol)9? = [62r192,
where 62 = (w(x,,,)z) and4 ¢ > —1; thus {(2) =1 and, in general, {(g) = ¢/2 from the
definition of structure function exponents in Eq. (16). We now contrast the properties of
w.n. and Bm:
* Gaussian w.n. is the prototypical stationary process: all its statistics are independent
of the position x,;. Absolute 1-point moments are invariant, §w(x,)IT) = {w(xI¥) for
m=1,...Mand q > —1 as is the 2-point autocorrelation function

(WO W) = 62(r), (Ada)

form =1,....M-r. W.n. is not only stationary but ergodic: spatial averages over a
single but large enough realization converge to the above ensemble averages, largely
because of the Gaussian nature of w(x,). In practice, very good estimates can be
obtained from relatively small samples; see Fig. Ala for a case with M = 1024.

¢ Bm is the prototypical nonstationary process with stationary increments. Indeed, its
1-point statistics depend explicitly on m: we may have {f(xm)) = {fo} (= O in the
following) for all m but5 (f,,,z) = {£2) + m{w;2) for m 2 0. The same is true of the
2-point autocorrelation:

Rt mar Y} o= %) + b rhim—r (A4b)
which follows from the identity 2f(x .. Jxm) = fxmar? + fxmP ~ Fmar xR In

1A symmetric Bernoulli trial yields w(x) = s with équally probable signs, hence Bm on a grid (widely
used in diffusion theory).

2fn neutron or photon transport, Laplacian or two-sided exponential free paths (mean A) are in order:
+AIn(®) with £ uniformly distributed on (0,1) and equally probable signs.

3The Box-Muller transformation can be used to obtain Zero-mean, unit-variance deviates; one way to do
this is N(0,1) = cos(rE; X-2InE;) /2 where &; (i = 1,2) are computer-generated (pseudo-random) deviates
distributed uniformly on (0,1). From there N(.0) = p+oM0,1).

4Generally the r-dependent pdf, Prob{A < Afir;x) < A+dA}/dA, of the increment AR r;x) = flx+r)-fx) (r2 0)
is non-vanishing at A = 0; moments (IARrx)) = JAqProb(dA) are therefore divergent for g < -1.

SSetting (f,2) = 0 enforces the nonstationarity (the m = O point is special). With (%) = M(w;2), detrending
and cyclically extending it, the resulting Bm is (cyclo-)stationary. However, we are interested primarily in
scales r « M for which this Bm is still nonstationary in the sense of the criterion in Eq. (284): f=2> 1.
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Figure Al: Ergodicity, With and Without Stationarity. (a) Uncorrelated (white) zero-mean unit-variance
Gaussian noise; this data is not only stationary, but ergodic as well: spatial estimates of the low-order
moments yield p = 1.4x 104, 6 = 0.9962 for M = 1024. (b) Running sum of the data in panel (a), i.e.,
Brownian motion; this data is nonstationary with stationary (and ergodic) increments.
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contrast, 2-point statistics based on Afir;x,;) depend only on r. Turning to spatial
averages on a scale of r pixels (I « r « M), I-point means and variances will
fluctuate wildly (non-ergodicity) but averages using Af(r;x,) are well-behaved
(ergodic increments) as long as Gaussian-type distributions are used. In summary,
Bm is neither stationary nor ergodic per se but has stationary and ergodic increments.
For an illustration, Fig. A1b shows the running sum of the data in Fig. Ala.

A.1.2 Lévy-Stable White Noise and Lévy Flights

White noise need not be Gaussian, hence so highly ergodic. Consider a power-law
(e.g., Pareto) distribution where moments above some critical order are divergent; this
means that their spatial estimates increase without bounds with sample size. Figure A2a
illustrates this case with w.n. obeying a Cauchy law: moments of order g = 1 diverge.
Only absolute moments of very small non-integer order can be properly estimated with
M= 103. The counterpart of Bm for the Cauchian w.n. is graphed in Fig. 2b. This
running sum of the data in Fig. 2a is a “Lévy-sable” process, often referred to as a Lévy
“flight” (Mandelbrot 1983). Here incremental ergodicity is of course violated.

By definition, Lévy-sable variables are a four-parameter class of deviates L(ct;a,b,c)
obeying the rescaling equation:!

YiL-na & nle(L—a), (AS)

* o is the “Lévy index.” For o0 — 0%, the solution is L = a (the degenerate distribution)
and normally distributed random variables obey the rescaling in Eq. (AS) when o = 2.
In general, 0 < a < 2 is the critical order above which statistical moments diverge
—variance included. For further details, we refer to Feller’s (1971) treatise.

¢ ais a“centering” parameter, the counterpart of mean J. in Gaussian deviates.

* be [-1,+1] controls skewness and has no equivalent in the Gaussian case.

* s the amplitude parameter, like standard deviation ¢ in the Gaussian case.

We focus here on the most straightforward generalizations of the Gaussian case (b = 0);

denoting these L(o;a,c), we have N(|L,0) = limg_,2-L(0}1,6). The only case with a closed-

form pdf is o = 1 (Cauchy deviates); the sample in Figs. A2a,b also has a = 0.

A.1.3 Spectral and Multifractal Properties -

We have already shown that Bm (Gaussian-type increments) is monoscaling with
H(g)=1/2,4>-1, (A6a)

The spectral exponent in E(k) o< kB is related to the g = 2 case by B = 2H(2)+1 = 2.

The defining relation (A5) for non-skewed Lévy-stable deviates with vanishing mean
(a = 0) says that IARr;xm) = IGL(00,0019 & #®1(01;0,c)M. So, aslongas—1<g<a,
Lévy flight increments obey (ARrf;xm)19) o< 72/%; therefore {(q) = g/o.. What if ¢ > o2
In theory, the corresponding moments do not exist, so neither will the exponent {(g). In

The symbol s means “identity in distribution.”
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Figure A2: Non-Ergodic Stationary and Nonstationary Processes. (@) White Lévy-stable noise with the
same order 1/2 moment as the Gaussian case in Fig. Ala; this data is stationary but non-ergodic (at least
for moments of order ¢ 2 1). Symmetric L&vy-stable deviates with zero mean L(0;0,c) with a Lévy “index”
o =1 and a scaling parameter ¢ = 0.338- = I"(3I4)21(1IE) were used, obeying a Cauchy law:

dProb{X S L(1;0,c) < X+dX} = cdX/[x(c2+X2)). (b) Running sum of the data in panel (), in other words,
a “Cauchian” Lévy-flight; this data is nonstationary with increments that are stationary but not ergodic.
The inset is a vertical zoom into the second half of the sample, showing more “jumps” of lesser magnitude.
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practice, finite-sample estimates of (Afir;x,)I9) become dominated by the most intense
event in the w.n. w{x,) = L(0.;0,c). The corresponding value of xp, is straddled by exactly
r of the M—r (> r) increments included in the spatial averaging operation; this leads to
(Afrxm)tT) = maxy,{lwExm)i}9r/M o r, hence {(q) = 1 for ¢ > o. In summary,
Lévy-stable processes are “operationally” multiscaling with {(q) = min{g/o,,1}; hence

H(g) =min{1l/0,1/g},q> -1 (0<0 <2). (A6b)

Here again we find = 2 (operationally) although for radically different reasons than in
Bm. To obtain Bm, we integrate (B — B+2) a sample of w.n. (B = 0) with spectral
density E(k) = constant < . In Lévy flights, spectral density (like variance) diverges:
E(k) — o with sample size, via the prefactor. In a finite sample, f{ix) has a finite number
of discontinuities, hence § = 2 as for Heaviside steps.!

A.2 Fractional Brownian Motions as Nonstationary Monofractal Functions
A.2.1 General Properties of Fractional Brownian Motion

Processes known as “fractional Brownian motion” (fBm) are, like Lévy flights,
generalizations of Bm but in a different direction. They were introduced by Mandelbrot
and van Ness (1968) to reproduce the correlation properties of otherwise Bm-like “steps”
observed in numerous physical signals, for instance, turbulent velocity. Like standard
Bm (uncorrelated steps), fBm is a nonstationary random function with stationary
increments.

The noteworthy property of all scale-invariant nonstationary signals and models, fBm
in particular, that describes incremental correlations is

(ARrx+nAfrx) = [22H@-1 - 11(Afrx)P). (AT)

This follows directly from Eq. (16), expressed for r and 2r at ¢ = 2, and the stationarity of
the increments. So, at H(2) = 1/2 we retrieve Bm with characteristically uncorrelated
increments in (A7). For 0 < H(2) < 1/2, we have negatively correlated increments: a
jump up is more often than not followed by a jump down and vice-versa. This leads to a
less nonstationary process than Bm, “anti-persistence” in Mandelbrot’s (1983) words.
For instance, Kolmogorov (1941) scaling in turbulent signals corresponds to H(2) = 1/3.
For 1/2 < H(2) < 1, we have the opposite situation: positively correlated increments or
“persistence” in Eq. (A7). If a jump tends to be followed by another in the same
direction, then we have more nonstationarity than in Bm. Mandelbrot notes that the
Earth’s topography is reasonably well modeled by setting H(2) = 0.75.
The higher-order structure functions of fBm obey

H(q) =YqVq=H,,0<Hy< 1. (A8)

We recall from §4.2 in the main body that relation (A8) arises whenever the increments
are distributed narrowly enough, Gaussian-style, that we can use the simplest dimensional

1The only difference in Fourier space between w.n. and a Dirac 8 is the random phases; both have B =0.
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arguments to estimate higher-order moments from low-order ones: taking ¢ =
standgd, then (y(xjrr)—ﬂx)l”) = (fx+D—fx)iH)97, q > —1. The deﬁnit.ioxgx ‘cI)f sfrua(s:t;hrz
function exponents in Eq. (16) then leads to {(g) = C(2)q/2 = qH(2) = qH,, hence (A8)

Eguatlon (A8) shows that fBm belongs to the restricted class of monofractal ran(:iom
fux.lctlons; its only parameter relevant to scaling, Hj, is equal, in particular, to the mean
Hélder exponent Hy = H(l). Figure A3a shows {(q) versus qforH =H, =’l/3 172, 213
henc;; an 111;creas161g d;gree of nonstationarity. The two extreme cases are also sl;owr;' ,
. 1 = Hy — 0 is the “stationary” limi i invari

bt scale-indopendents s ary” limit where increments are not only scale-invariant
* H; = Hy - 1 is the “differentiable” limj i

ﬁzywhem . s proportionm oK scal]l:nt where increments become (almost)

e remainder of this section, we describe the two major co i

fBm —one in physical space, the other in Fourier space— :nd a \Irnal:;t::l t(::iilgroruuntensinto
sums. The common denominator of these methods is to use only Gaussian randong1
numbers and additions, hence the term “additive” s frequently used for this whole class
of models..‘ Sums of r.lormal deviates are normally distributed, so all quantities involved
are Gaus§1an ~—nost importantly, f(x) and f{x+r)—f(x)— therefore Eq. (A8) is verified b
constr_uctlon. Nog-Gaussim multifractal models that violate (A8) were discussed abovz
and will be again in §A 4, after surveying the prerequisite singular measures in s §A.3.

A.2.2 Synthesis in Physical Space (Recursive Mid-Point Displacement)

pei The simplest algorithm for making fBm is known as “mid-point displacement,” cf.
eligen ef al. (1988). For procedures in physical space, it is generally convenient to use

units of 1 i i i
it ength where the grid constant is unity and we take a power of 2 plus one grid

M=L,+1=20417n>0. (A9)
To determine f,(x;) for j = 0,...,2" we first set!
Jn0) =fo- (A10)
£y = {N(fo,oo) where 0 = 2(1-H,)—] or
n Ja(0) for cyclical boundary conditions * (AlD)

This completes the maxim = :
smaller scl;les, um scale ro = L,. We then proceed recursively to smaller and

i=raf2=ry2i=2mi(i=1,... n), (Al12)
using a decreasing sequence of standard deviations,
0i =012t = 0p/2iH; (i=],...n). (A13)

New points are generated by averaging existing ones and adding random displacements:
Jalzitr) = UnOH 2R (U2 + NO,G), 3= 2jr 1= 0,...21-1).  (Al4)

1 . . .
The value of £,(0) in (A10) is arbitrary but deterministic, hence the patently nonstationary nature of fBm
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Results for five cases are presented in Fig. A3b, illustrating more and more
nonstationarity: Hy =0 (“1/f” noise, cf. next section); H; = 1/3 (anti-persistence, as in
turbulent signals); H; = 1/2 (Bm); H, = 2/3 (persistence, as in topography); and H, =1
(a noiseless linear trend). For the generalization to 2D, we refer to Peitgen er al. (1988).

—u—H1 = 0, storary processes.
| —e—H1 =02,
—a—H1 = 12, st B
—a—H1 = 273 porsisnt B

—e—H1 = 1, el provemes
R bounded cascade model, HI =

S

w

1

AN
N\
AN

(a) (b)
Figure A3: Fractional Brownian Motions in 1D, with More or Less Nonstationarity. (a).qth-onjler
structure function exponents {(g) = gH,. (b) Three different fBm’s (H; = H; = 173, le, 7{3, by increasing
degree of nonstationarity) and two limiting cases: H; = 0 (“1/fnoise,” border-line stationarity) and H; =1
(differentiability, maximum nonstationarity on this scale).

A.2.3 Synthesis in Fourier Space (Power-Law Filtering)

Another way of generating fBm is with low-pass power-law filtering m Fourier space,
a procedure also known as “fractional integration” that we will invoke again further on to
generate multifractal signals.! . . .

Following Voss (1983), we start with Gaussian white noise on a grid of size 27:

wn(x)) = N(0,1),j=0,...,2"1. (Al15)

This trivial stochastic process made of normal deviates, completely unct_m’elated from one
grid point to the next, is scale-invariant by construction and characterized by a spectral

exponent By =0, (AL6)
We now want to incorporate correlations, leading to
B=2H;+1. (A17)
This is easily done by power-law filtering in Fourier space, where it is convenient to set
L=2%,=1. ' (A18)

1Pearson (1990) surveys fractional integration, as defined in the mathematical literature, which is somewhat
different from ours.
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After obtaining!

{fn(0)= #n(0) =0 )

Falk) = WXV k=41, . 42m-1,

we compute f,(x;) by inverse Fourier transform for X;j=jéy (j=0,...,2"—1). The exponent
H+172 (0 < H2 < 1) in Eq. (A19) is naturally the “order of the fractional integration.”
Generalization to 2D is straightforward.

Equation (A17) still applies if we take H, < O hence B<1,orH;>1hence B >3,in
(A19). The latter choice yields nonstationary random functions with nonstationary
increments, varying so weakly in the small scales that they are everywhere continuous
and almost everywhere differentiable. So, increments become proportional to distance
between points of interest: (Ix+r)~fx)l) = ([fix+r)fx)19) V4 o< r, leading to H(q) = 1.
We now discuss the consequences of the former choice.

A.2.4 Synthesis from Stationary Gaussian Scaling Noises

What if we take H; <0 in the recipe contained in Eq. (A16)? The recursive mid-point
displacement procedure in §A.2.3 can also be applied for negative? H,. However, the
outcome for H; < 0 and H; > 0 have radically different properties.

* If H; <0, the corresponding scale-invariant noise has an energy spectrum E(k) o< kP
with B < 1; there is finite energy (i.e., variance) at large scales (k — 0) but
divergence at small ones (k — o) —a so-called “ultra-violet” catastrophe occurs.
This means that small-scale singularities will develop whereas large-scale properties
will remain relatively well-behaved,

* For H, >0 (B > 1), the opposite occurs —an “infra-red” catastrophe. We can
therefore expect large fluctuations at scales comparable to the computational domain,
but relatively small ones at the pixel scale.

Only for Hz < O is there a well-defined, monotonically decreasing power-law

autocorrelation function:? (fx+r)ix)) e r1-) = -2}, hence stationarity in the broad-

sense. For 0 < H; < 1, a power-law structure function for q =2 follows from a power-law
energy spectrum E(k): {[fix+r)—f(x)]2) e r2H; hence (broad-sense) stationary increments.

We will refer to these models with H, < 0 as “Stationary Gaussian Scaling Noises”
(or SGSNs). One-dimensional fBm with spectral exponent 1 < B < 3 can be obtained by
standard integration (i.c., running sums in physical space) of SGSNs with B’ = B—2 such
that IB’) < 1. These SGSNs are first obtained by fractional integration of Gaussijan w.n. at
order B’/2 = H)+1/2, ranging from -1/2 to 172 (-1 < Hj < 0). We note that, for the anti-
persistent case (1 < B < 2), the corresponding SGSNs results in effect from a fractional

INote that we leave the phases tan~'(Imf,, (k)V/Re[#;(k)]) of the Fourier components unchanged.
gowcvef, to retrieve Bm exactly (as defined in §A.1.1), we need to change the phases by exactly n/2:
JFn(k) =wy(k)(ik) will yield a realization with Jo=Wp(0)L=0.

2The choice H3 =172 leads to a rather convoluted way of generating uncorrelated values at every pixel.
In contrast, this choice implies a null operation in the Fourier-based recipe in Eq. (A19).

3This requires 0 < B < 1 (=172 < Hy < 0), otherwise (Hy < ~172) there are anti-correlations from one
grid-point to the next; thus ({x+r)x)) <0, and a power-law parameterization is invalid.
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“differentiation” of Gaussian white noise, the order of “integration” f8'/2 being negative,
between O (for Bm) and —1/2 (for “1/f” noise).

A.3 Cascades Leading to Singular, Stationary, Mono- and Multifractal Measures

Calibration of singularity analysis algorithms calls for a different class of models than
described above. The main requirement is that the model can be read as a “measure,” a
non-negative! field that we will denote generically by &(x). This excludes the models
discussed up to now. In practical data analysis applications, the nonstationary data-
stream can be used to generate a measure, typically by taking small- but finite-scale
gradients then their absolute values or squares. We can do this for the models presented
in section A.2 but the results are quite disappointing, the small-scale gradients fields of
Gaussian models being at best weakly variable (narrowly distributed).

Let fix) be a nonstationary additive process based on w(x), a Gaussian-type noise such
as an SGSN. This gives &(x) = Iw(x)| which varies less than w(x) itself. Being essentially
a running mean, the coarse-grained measure €(r;x) = (l/r)Z’f-;',llw(x’)I will be statistically
independent not only of x, stationarity oblige, but also of r over a large range of values
because of the strong ergodic property of Gaussian-like w(x). This translates to K(g) =0
in Eq. (20), apart from finite sampling effects (Aurell ef al. 1992). The same is true for
models of w(x) with power-law tails, except that moments exist only up to some critical
order gp: K(g) = 0 for q < gp; for instance, Lévy-stable variables yield gp = o0 < 2.

To obtain models with K(g)# 0, we must leave the realm of additive models and
generate measures with multiplicative cascades. In the same way as fBm’s are
monofractal random functions fx) with multifractal counterparts (some of which are
described in Section A.4), there are mono- and multifractal measures. The literature on
multifractal measures is vast and increasing at a rapid pace. In this survey, we will start
with some well-known monofractal cases in 1D and 2D (§A.3.1); straightforward
generalizations of these (§A.3.2) lead to multiscaling in 1D (§A.3.3—4) and 2D (§A.3.5).

Mono- and multifractal cascade models come in two distinct flavors: the “canonical”
(§A.3.3) and the “microcanonical” (§A.3.4-5). The latter, having the same singularity
properties for every realization (ergodicity in the sense of singular measures), are
particularly useful for the purposes of calibration; the former are arguably more realistic
models for geophysical fields (Schertzer and Lovejoy 1987, Gupta and Waymire 1993).
However, they are always non-ergodic at’some level of confidence and can sometimes
exhibit the interesting statistical phenomenon of divergence of higher-order moments. If
ignored, this last characteristic can affect a calibration procedure.

A.3.1 Cantor’s, Dirac’s and Other Monaofractal Measures

Consider the example of Cantor’s measure, supported entirely by Cantor’s famous set
(Fig. A4a) which has fractal dimension D¢ = log2/log3 = log32 = 0.631-- <d = 1.

lehematically. “measures” can be thought of as “generalized” functions in the sense of Dirac (i.e.,
defined only under integrals) that are furthermore non-negative. The sum of integrals over disjoint sets is
therefore equal to the integral over their union.
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Cantor’s measure is generated by starting wi i istri .
ntor’ e | L g with a uniform distribution, eg(x) = 1
whlgh (1:: ];h(eOI: gxe\gddc,(’i) into 3 equal parts. The middle! third is emptiig o)f its r(:;a[s(ﬁg
—thx‘ S y") 1s now “dead”— and its mass is uniformly redistributed be
S Wi
its n'elghlt);)ers whf.re €o(x) therefore !Jecomes €1(x) = go(x)x(1+1/2) = 3/2. We have t::;
ar:eguued3n 0 .spaual average to remain constant. After » steps, the scale is In = 37", there
Anhou(;i fj utl all,.opl).r 2”7 of which cm a measure €,(x) = (3/2)", elsewhere e,,(;) =0
o = t(a 2&;.3r1)1’1'1)1<1(1;/t12<;,nq one (it/i:x; stxlll )«liet‘me the spatial statistics of this measure'.
" = = - . -« )
(el [(1/3y*)(1-9)log, 1(2/3), Equation (20) in the main text then
K(q) = [1-log32)(g~1), ¢ > 0. (A20a)

g?);gal?yowv:ec::v; tIig:(;)): 0 (Ey definition) and, for q < 0, we find (E(rpx)d) = =
s q) = == here) because the empty events, £(r,,;x) = 0 i
We :(:e that the factor 1—10532 in (20a) is the codimension d-D¢ of C;.nt)or’s s,e(tjommate-
dismbugz:mg[;l& ;r)nbe;lded ie 2D.is easily generated as follows. Start with a. uniform
ition, = 1, on the unit square; then divided it into 4 equal arts;
.s,‘:g;;s‘pmkeﬁ at random?, and its I.neasure (1/4 of total) is set to O? thepmea;uf: ?nsuth:
e ring cells is boos@ proportionately, becoming €1(xy) = Eo(xy)x(1+1/3) = 4/3
T n steps, the scale of interest is r, = 27", there are 47 cells in all with only 37 of—then;

containing a non-vanishing measure, Ex(xy) = . .
s y) = (4/3)*. Spatial
(€(rnsx)) = 34y (413)4 = [(1/2))(1-log, (3/4), }:e,,cg’ averaging leads therefore to

K(g) = [2-10g23](g-1), ¢ > 0. (A20p)

The support of this measure is a fractal se i i
: ‘ t of codimension ~K(0*) = 2~log,3, h
bﬁ:c tal dimension D = 2+K(0*) = log,3 = 1585 < d = 2. as can b veriﬁg:d,b - dires
X-counting methods.3 ¢ Y direet
The simplest random monofractal Imeasure i
St rar ‘ ure is probably a Dirac §-functio iti
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len: eir support is Dy = 0, hence a codimension d-Di=d timat
statistical moments of the coarse-graj ained e -
grained measure &(r;x) contained j i
[x.x+7) or sub-domain [xx+r)@[y i . ki nterval
y+r),05r<1, according to Eq. (14): takin i
necessary, y) at random, we find &(r;x) = 1/rd wi it . B e, 1f
, 3 X) = ith probabil i
Therefore, we have (&(rix)d) = rdfrdg = r(1-9M; hence, frol:n Eq. (21(t)))I 7 and 0 otherwise.

K@) =(¢-1)d, ¢>0. (A20¢)
All of the above formulas (A20q,b,c) can be parameterized as
K(g) = (¢-1)Co, ¢ >0, (A21)

I'I"he.“middle-ﬂlild" convention leads
2pl(:kmg the next dead cell at random,
If the - is pi
ey :’m;n;(;.g; ,:,m left? sub-square is picked each time, the limiting set is akin to Sierpinski’s triangle
Toual ow. x;;c «:f ;’IIIA: r=12%(n20) in unit square: M= (272 = (1/)d (4 = 2). Number nwﬁe(;
fractal set: s = 3" o (1/0Dr, Fractal dlmen.sion of set: Df= logNgNog(1/r) = log,3 (QED).

to a deterministic measure. The spatial statistics are unchanged by
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where Co = d-D¢> 0 is the codimension of the support. The above measures are
“monofractal” in the sense that their supports are nontrivial fracta{s; however, on these
sparse subsets of space, they are uniformly distributed. Why their exp(.menFs K(q) are
always in the linear relationship spelled out in Eq. (21) can be traced tq this uniformity.

Another common feature of the above monofractal models is that they_ were
constrained, largely for tutorial purposes, to have the same statistics fpr every realization
(and indeed at every cascade step); in particular, the total measure is conserved. Such
models are called “microcanonical” (Mandelbrot, 1974). “Canonical” c_ounterpa_rts of
these models —where only the probability of killing a cell is prescribed, mespecu.ve 9f
what happens 10 its neighbors— have been proposed to model ll? transects of the kmem?
energy dissipation field in fully-developed 3D turbulence (Novikov and‘ Stewart, 1964,
Mandelbrot, 1974; Frisch er al., 1978). Indeed there is no reason to require a 1D sample
of a 3D field to obey a conservation law that applies at best to the whole volume gf the
system. The observed statistics of turbulent flows are best reprpduced by models with C;
values in the range 0.2-0.3. Following the nomenclature of Frisch et al. (1978), we refer
to these monoscaling canonical cascade models collectively as “beta” models.

(b) . oe. 1 (a3 )
16 7 B
— ° L

wo. 3 (3 b )
— 1 L
(a) 1 "mmien |

0 x- 1 127

- o B
e(x) |
— ——— o —
5 - |

 E—

;,-z.;;l\t A
<.,,1.°.,4! AMJ& 0,

e'=0.47

0 1

Figure Ad: Two Multiplicative Cascades in 1D with branching ratio A =3. (a) First 3 cascade steps in the
construction of Cantor’s deterministic measure, with D(g) = logy2 = 0.63-. (b) A random log-normal
measure, cascade steps # 1, 2, 4 (inset) and 6, with D(g)=d-Cigwhered=1,C; =0.11-- and g <d/C|.
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A.3.2 Canonical Random Measures and Divergence of Higher-Order Moments

There is no reason to limit ourselves to uniform measures. A simple way of obtaining
non-uniform measures is to allow the random multiplicative “weights” used implicitly in
the above cascade algorithms to differ from O or a constant. In general, we can envision a
“turbulent™ cascade process in d = 1 or 2 dimensions that proceeds by divisions into A4
“sub-eddies™ of equal size at each step; the integer A is known as the “branching ratio.”
Afier n steps the scale is r, = A", we have

n
en= [ Wi (A22a)
1

requiring only that
(W=1. (A22b)

Redefining temporarily K(q) as —~In{g,, 9)/Inr,, —as opposed to the parameterization in
the main text’s Eq. (20) of the integrals (measures) defined in Eqs. (14-15)— it is easy to
see that

In(W"
K(g)= —jlnjﬁ =loga{W9), {g € R; (W9) < o}. (A23a)

Defined in this way, K(g) inherits all of the analytical properties of cumulant-generating
function! for the random variables IlnW. In particular, K(g) is convex with K(0) = 0. We
also know that K(1) = 0 due to (A22b).

Returning to the original definition of KX(q) in relation to the measures in Eq. (20) is
quite involved mathematically (Mandelbrot, 1974; Kahane and Peryiére, 1976; Schertzer
and Lovejoy, 1987; Gupta and Waymire, 1993). However, the only difference is
ultimately that the trivial condition on g in Eq. (A23a) is replaced by

K(gp) _ d)
gp-l T
For g 2 gp, the moments {e(r;x)4) are divergent. In practical data analysis applications,
the symptom of a diverging moment is that its estimate is unstable, being dominated by
the single largest event. The intensity of this event will depend critically on the sample
size (in this case, grid size and number of realizations); we refer to Schertzer and
Lovejoy (1992) for further details.

In summary, we can view the monofractal models of §A.3.1 as a limiting case in a
continuum of models. The codimension of the measure’s support is2

Co = -K(0%). (A24)

If, as in monofractal cases, Cp > 0 then it is arguably the most important parameter of the
model since it defines geometrically the concentration of the measure on a sparse subset

{g<4p; (A23b)

1The characteristic function of a random variable E is defined as ¢(¢) = (exp[ifE]), i.e., the Fourier transform
of its pdf; the cumulant-generating function (or “2nd characteristic function™) is In¢(s). Taking & = nW
and it = q, we have K(q) = In¢{g//)/InA. For imaginary arguments, ¢(z) is real and convex (Feller 1971).

2For g =0 everywhere &(r;x) > 0 we have e(r,x)? = 1, otherwise (i.e., £(r;x) = 0), we have e(r.x)q =0.
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of space. In many cases however (cf. next sub-section), the probability of drawing
exactly null weights is vanishingly small; this leads to K(0*) = K(0) =0, hence Cy = 0.

In situations where Cy = 0 (i.e., the measure is supported by all of space), the next
simplest way of quantifying its degree of concentration (hence intermittency) is the
information codimension:

Ci=K(1). (A25)
This quantity can be obtained directly from the weights since Eqs. (A23a) and (A25)
yield K’(1) = (WlogaW)). For monofractal models, the linear formula for K(g) in Eq.
(A21) yields K’(1) = K(0*), hence Cy = C;. We also note that, Wlog)W being a convex
function of W, Jensen’s (1906) inequality tells us that C; = (Wloga W) = (W)log (W) =0.

Yet another way of parameterizing intermittency uses the correlation codimension

C, =K(2). (A26)

This 2nd-order statistic is the preferred choice in the turbulence literature, where C; is in
fact referred to as the “intermittency parameter” (and denoted “u”). It determines the
measure’s spectral exponent!

Be=1-K(2)< 1. (A27)
The inequality follows from K{(g)’s convexity and K(1) = 0 which imply K(2) > 0. This
establishes the stationarity of cascade processes according to the criterion in Eq. (28a).

A.3.3 The Canonical Log-Normal Model, Stationarity in Presence of Intermittency

Consider a specific example: we use the Cantor measure construction (A = 3) with
log-normal rather than Bernoulli weights. Instead of W; = 0 (Prob 1/3) or 3/2 (Prob 2/3),
we take:

W; = expIN(1L0)] = exp[+oN(0,1)] G = 1,....1), (A280)
2
with p=-3 (A28b)

to properly normalize the cascade, (W) = 1.

In Fig. A4b, we illustrate the first steps of the construction using ¢ = 0.4. Notice the
development of multiple singularities. At the same time, most of €,(x)’s values become
smaller as n is incremented. Indeed, at constant x, Ine,(x) = X3nW; = Z{u+0N(0,1)] is
executing a random walk as a function of (discrete) “time” n, like the Bm described in
§A.1.1 but with a systematic drift in the negative direction, due to (A28b).

Log-normal cascades were first introduced in turbulence theory by Kolmogorov
(1962) and Obukhov (1962) to account for the effects of intermittency in the kinetic
energy dissipation rate at high Reynolds numbers; o around 0.7 was found to fit the data.
We recall that, like SGSNs (§A.2.4), the model in Fig. A4b exemplifies stationarity
according to criterion (28a) in the main text, cf. Eq. (A27). However, in sharp contrast
with SGSNs, these cascades are highly non-Gaussian, not unlike the Lévy-stable w.n.

IThis follows from {ee(+n) ~ rX (Monin and Yaglom 1975, pp. 618-620) which is in Fourier
duality with the energy spectrum (Wiener—Khinchin theorem) Eg(k) ~ kPe with ¢ + K(2) = 1.
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described previously. This is traceable to the multiplicative nature of the construction. In

contrast with the white Lévy-stable noise, cascades have more i i i
. ; t
properties due to the recursive nature of their construction. FeTestig comelation
Equations (A234) and (A284,b) yield!

o2
K(9) = 2577 a(g-1), (A29)
Using (A25), this can be rewritten?

K(q) = Ciq(¢-1), g < gp = d/Cy, (A30)

by identifying C, with 62/(2InA). Th iti i
djvergex}ce of moments, as p(redict)ed by ‘;5:]:??:12%(:)1. o 4 10 B3 (A30) accounts for the
‘In Fig. 1:\5a, we have plotted K(q) for a log-normal model in d = | with C; = 0.25
notice the divergence of moments, formally K(g) = o, for q4>4qp =4. For COlIll aris.on
v{e have also plotted K(g) for two of the monofractal models discussed previou.slp Dirac:
) s a{ld Canfor measures. Figure ASb shows a sequence of log-normal cascadeyl'nodels
with increasing degrees of intermittency: ¢ =0 (€1 =0);,6=025 (C1 =0.05); 6 =0.5
(C1=0.18);ando=1.0 (C1 =0.72). Notice the increasing concentration and spiiciness..

Figure A5: Log-Normal Cascade Models in 1D, with More-or-Less Intermittency. (a) Exponents K(g) for

alog-n i

o fD :‘lgn-:lo l::l;?:)dt:ll ca: and two monofractal cases; the onset of divergence for ¢ > 4 is indicated for

o g . with C; = 0.25. (b) Four cascades with (€) = 1 that illustrate an increasing degree
" ttency: C,; = 0.0, 0.05, 0.18, and 0.72. Models with C; > 1 would be “de eny i

meaning almost empty in most realizations but a huge peak would occur now and then seneme” i b
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A.3.4 The Microcanonical Log-Binomial “p-model”

Meneveau and Sreenivasan’s (1987b) one-dimensional “p-model” is a microcanonical
alternative to the canonical log-normal model. Here A =2 and the weights are

W_.= =
Wi=1 i(l—2p)={ W+=22f2p ((]1?;]1;= {g;},0<p< 112(i=0,...n1)  (A3la)

in one sub-eddy, and

W’,-=2—W,-={$t} (A31b)
in the other, to conserve the total measure (cf. Fig. A6). The microcanonical nature of
this model meaas that every sequence of 1’s yields the same binomially distributed
values for ,(x), W_mW,# (m = 0,...,n) with probability (})/2"; only their order of
occurrence changes. Such predictability —exact ergodicity in the sense of singular
measures— in a calibration procedure for singularity analysis is obviously desirable.

The choice of weights in Eq. (A31aq) yields

K(q) = logo[W_U12 + W, /2] = logal(2p)? + (2-2p)") - 1, (A32)

for! g € R. Exponents of special interest are

 the information dimension: D; = 1-C| = —[plog2p+(1-p)logz(1-p)] from ¢ = 1; and

+ the spectral exponent: g = 1-loga[1+(1-2p)2] from g =2.

The latter is plotted as a function of p in Fig. A7a where the inset illustrates a typical
realization. The sample in question was generated using p = 0.35, as suggested by
Meneveau and Sreenivasan’s (1987a) measurements of the dissipation field in turbulent
flows; its more important characteristics are Dy = 0.65 (C; = 0.35), and B = 0.88. The
two limiting cases are familiar: p — 0% yields randomly placed 8-functions, p — 1/2- (or
¢ — 0* for the log-normal case) weak 1/f-type fluctuations from the unitary mean value.

A.3.5 The “p(3)-model”, A 2D Generalization of the “p-model”

The most general microcanonical cascade with A = 2 in d = 2 calls for three

parameters that we will denote .
0<pip2ap3sln (A33)

They will be used to shift mass in the same way as in the p-model but in both horizontal
(E-W) and vertical (N-S) directions as well as between the two diagonals:

EoW: 1+ (1-2py)
NeoS: 1£(1-2py) r, (A34)
NE/SW & NW/SE: 1 + (1-2py)

1We have K(g) = glog,W,—1 for g — too. From Eg. (A23b), and knowing that W, = 2-2p < 2, the large ¢
limit tells us that all moments converge for microcanonical models. Not only they converge but (by
construction) their estimates for every realization are identical, even for a single cascade step.
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Start with unitorm slab,

eI man e

transfer fraction Fi of the mass,

then transfer fraction F: within each half,

Figure A6: Genesis of a Microcanonical Cascade in 1D. Three steps are illustrated. The total mass is

conserved at each step, implying anti-correlated multiplicative weights in each sub-cell: W;+W;’ =2, hence
W; = 12F; and W;’ = IFF;. (a) (b)
B Singularity & Boundedness &
A Stationarity AP Non-Statlonarity
(H=0, 0<p<1/2) (H>0, arbitrary p)
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1 | B=rtog 18 (1-p)")
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HF‘ignre_ p AT: .Spectral Exponenss of Singular and Bounded Cascades. (a) Stationary but intermittent case
ﬂm: , reverting to Meneveau and Sreelflvasan's (1987) “p-model” for the kinetic energy dissipation rate
e occ:r’r’s ?t the IFol'mogorov scale in fully developed turbulent flows; this model is unbounded
¢ all:;lgul ) in the limit of many cascade steps. (b) Nonstationary H > 0 generalization proposed b
an et al. (1990, 1994) to model cloud optical depth variability in stratocumulus decks th :
observed to have power-law spectra with B = 5/3. e
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where {px, py, pa} is one of the 3! = 6 permutations of {p1, p2, p3}, with equal
probability and random +. After the three transfers, the individual combined weights are
3

w= ] we= [0 +s1-2p0), (A35)
Be {x,y.d} k=1

where {si; k=1,2,3} = {51, 52, 53} = {L, £, +}, one of the 8 equally probable combinations.
These weights fall between

3
W= min{W} = [][1 £ (1-2p9) (A36)
k=1
For this choice of W’s,
l 8 combos 3
(Wh=3g 2. [nza-zor, (A37)
() k=l

for g € R, hence K(q) from Eq. (A23a). If p; = p < 1/2and p; = p3 = 1/2, we have
“only two equally probable weights W, and Eq. (A32) is retrieved.

A.4 Going from Stationary Measures to Nonstationary Multifractal Functions

It is important to have the option of multiscaling as well as monoscaling (section A.2)
in the realm of nonstationary functions with stationary increments. We therefore need
algorithms that generate fields where structure-function analysis yields a nonlinear {(g),
equivalently, a non-constant H(g). There are many well-documented methods for
generating stationary multifractal measures using multiplicative cascades; in contrast, the
literature on specific ways of generating nonstationary functions with multiscaling
structure functions is relatively small. We present two procedures here (Schertzer and
Lovejoy, 1987; Cahalan et al., 1990) and refer to Viscek and Barabasf (1991), Améodo et
al. (1992), Benzi et al. (1993), and Sykes et al. (1996) for the few others we are aware of.

A.4.1 “Bounded” Cascades

One route from multiplicative cascades to nonstationary multiscaling processes was
charted by Cahalan et al. (1990) for the purposes of modeling the internal structure of
marine stratocumulus. Their model builds on Meneveau and Sreenivasan’s (1987)
p-model, calling for a power-law decay of the variance of the weights as the
multiplicative cascade proceeds to smaller and smaller scales, r; = L/2f (i = 0,...,n).
Explicitly, we take

W;=12(1-2p)ri.i/L) ™ (equal Prob1),0<p<1/2,0S HS oo,  (A38a)

Wi=2-W, (A38b)

for i 2 1. Figure A7b shows the effect of H on the spectral exponent: § = min{2H,1}+1
(Cahalan et al., 1994); the inset shows examples for H = 1/3, 1.7.
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Marshak et al. (1994) show that the resulting model, f,,(x), is multifractal in the sense
that higher-order structure functions: (If,(x+r)—f(x)I) goes as r4H(@) with

H(g) = min{H,1/q). (A39)

Interestingly, p does not appear in Eq. (A39) which determines the scaling of 2-point
statistics of all orders; Cahalan et al. (1994) investigate its role in 1-point statistics, hence
prefactors in Eq. (16) of the main text. Clearly, H controls the degree of nonstationarity.
The p-model is retrieved in the “stationary” limit H = 0. At H — o, we find the “most
nonstationary” in this continuum of models, Heaviside steps of height 2(1-2p) at x = L/2.

Figure A8 illustrates two important properties of bounded cascades which are shared
by other multiscaling random functions (as well as fBm’s, their monoscaling
counterparts): stochastic continuity and self-affinity. Two identical sequences of
successive horizontal zooms are illustrated; the difference is only that on the Lh.s. the
vertical scale is held constant and on the r.h.s it is rescaled by a given factor at each
zoom. On the Lh.s. we see the amplitude of the increments decrease dramatically with
scale (continuity property). However, on the r.h.s. we see that zooms onto different
portions of the graph of fu(x) are statistically similar: the graph is self-affine with fractal
dimension Dgraph = 2—Hj = 5/3 in this Hy = H = 1/3 case.
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Figure A8: Stochastic Continuity and Self-Affinity of a 1D Bounded Cascade Model. The sequence of
zooms on the Lh.s. (without vertical rescaling) shows how smaller scales lead to smaller increments; this is
called “stochastic continuity.” The r.h.s. sequence (with vertical rescaling) yields three graphs that are
statistically indistinguishable from the original at the top; this property is “self-affinity.”
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Figure A9 shows an example of a 2D generalization of the aboAve bounded cascade
model starting with the “p(3)-model.” The factors 1-2pi .(k =1,2,3)1n Eqs. (A34-36) are
multiplied by the variance moderating factor (ri./L)~H, i=1,...n, as in Eq. (384). Thlls
type of model was used by Cahalan (1994), Marshak et al. (1995a) and Davis er al.

(1996b) in radiative transfer computations.

N W ow;

e

=

col 100

Figure A9: Perspective View of a 2D Bounded Cascade Model. The numerical values of parameters are
H = 1/3 and p; = 0.42+(k-1)x0.03 in a 7-step process.
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A.4.2 Random Devil’s Staircases

The simplest way of obtaining a function from a multifractal measure is to take its

indefinite integral:
X

fe) = fetydr, 0<x<L (A40)
0

Since g(x) = 0, this random “Devil’s staircase” (Mandelbrot 1983) is a non-decreasing
function, as illustrated by the typical realization based on a log-normal cascade in Fig.
Al10a. The increments of (A40) are easily computed, using the definition of a coarse-
grained measure in Eq. (14) in the main body:

X+r

foletr)—~felx) = J'e(x')dx’ =re(rx), 0Sx<L-r,0<r<L. (A41)

The gth order moment of this increment is directly related to that of (r;x):

(fe(etr)~fe(0)1?) = erin)), g < gp. (A42)

Using the definitions in Egs. (16) and (20) and taking logs, we find {(gq) = q—K(q);
equivalently,
K
H@=1-"2 g <ap. (A43)

In particular, integrals of randomly placed 8-functions, with K(q) = g—1 (g > 0), yield
randomly placed Heaviside steps which are multifractal functions with a broad range of
Holder exponents: H(g) = 1/q (¢ > 0). The limit # — < in Eq. (A39) confirms this
result, that Marshak et al. (1996) derive from first principles as well.

A.4.3 Fractionally Integrated Singular Cascades

To simulate the scale-invariant spatial properties observed in cloud fields, Schertzer
and Lovejoy (1987) generalize the Devil’s staircase concept. As a means of introducing
the continuity that necessarily comes with nonstationarity, they simply use fractional
integration instead of its standard counterpart. This yields what shall call a Fractionally
Integrated Singular Cascade (FISC). We use here the same form of fractional integration
as in §A.2.3, low-pass power-law filtering in Fourier space. Consider a 1D grid of size
M, = 2" and unitary outer scale,

X =l m=0,... My=1 (L =Mpbp = 1), (Ad4)

where we construct an n-step cascade process with branching ratio A = 2. This field is
generated in physical space and its Fourier representation is computed numerically:

{en(xj),j=0,...,2"—1

Enlk), k =041,... 211, (A45)
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(a)

cascade process

- 'Devil's staircase’

(b)

cascade process

fractionally integrated

Figure A10: Hybrid Multiplicative/Additive Models. (a) Random Devil's Staircase: both the measure and
its integral are illustrated. (5) Same as in panel (a) but for a fractional integration of order 1/3.
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The measure &(x) is then “smoothed” into a function using

Fal®) = €n(x) # xi-(1-HD)
O<H <1, A46,
{fn(k) = A(H") & (i) % U-H’ <i=< (A46q)
where (e.g., Gradstein and Ryzhik 1980)
ACE) = | cosG TG (A46b)

Figure A10b shows the outcome for a log-normal cascade similar to that in Fig. A10a
using a fractional order of integration H* = 1/3. The exponent H* of the power-law filter
is the nonstationarity parameter of the model, given directly by the spectral exponent we
want for f(x):

H* = E%&, (A47)

given that of &(x),
Be = 1-K(2), (A48)

where K(2) defines the scaling of (e(r,x)z) ~ K@ As for fBm using the Fourier
construction (§A.2.3), generalization to 2D is straightforward.

We need to estimate the scaling exponents for this model for ¢ # 2 (at g = 2, the
scaling is determined exactly by the construction algorithm). For this, we tentatively
interpret Eq. (46a) as

x4~ ~ e(rix) ril; (A49)

taking gth powers, and averaging yields {(q) = gH*—K(q), given the exponent definitions
in main text’s Eqgs. (16) and (20). This {(q) <> K(g) connection is a special case of Eq.
(26) with @ = 1/H* and b = 1, leading to

@ , 4 < gD. (AS50)

H(q)=H"-
So this generalizes Eq. (A43) for Devil’s staircases where H* = 1.

However, the general (event-wise) applicability of (A49), hence (A50) for all values
of g, to FISCs is questionable. However, Eq. (A50) is guaranteed by construction to
work for g = 0 and ¢ = 2, between these two values it provides at least a good
approximation to numerically obtained {(g)’s. As g increases far beyond 2, we are
effectively emphasizing ever larger events in €(r;x) on the r.h.s. of (A49). It is easy to
imagine situations where the increment f(x+r)-f(x) on the Lh.s. of (A49) is small,
although the underlying measure €(r;x) is large. For instance, take x+r and x on either
side of a strong spike in Fig. A10b. Consequently, the agreement between the statistics
independently determined on either side of Eq. (A49) deteriorates. !

IDavis ez al. (1993, 1994b) describe a more general approach for characterizing the correlations between
some nonstationary process f{x), artificial or real, and the associated g(x) field.
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Table Al (begin): Scale-Invariant Processes. 2nd-order statistics and associated stationarity and continuity
properties.

Domains? Parameters? Stationarity?
... per sed
Model xe[0.LYS, primary B<D
Sect. | Figure w, fore secondary o(fBulc;';
exponents: d | | f {1
I. Discrete model for w(x) = f’(x), without correlations:
a |Bemoulliw.n. | Al 1 |w=xs]|s>0 0 MK
b | Bmon a grid ALl 1 |ffseZ|s>0 2 v
II. Gaussian model for w(x) = f°(x), without correlations:
a | Gaussian w.n. | A.11 [Ala 12|lweR|o>0 M 0 N[V
b | off-grid Bm ALl | A1b 1 |fe®k {6>0 fo 2 v
HI. Non-Gaussian model for wix) = f°(x), without correlations:
a | Lévy w.n. A12 | A% 12jwe R|0<<2 a, ¢ 0 K
b | Lévy-flight Al2 [A% 1 jfeXk |0<a<2 oo |12 v
IV. Gaussian models for f’(x) and f(x), with correlations:
a | SGSN+ A24 12|reR]|-1<H,<0 |o 1-21H,) MK
b |fBm A2 |a3 12]fe R |0<H<1 o 2H,+1 v

V. Cascade models £(x) and fx), with microcanonical conservation:
a | p-model A34 | A6-7 1, |le>0 J0<p<i2 T-ogl1+(1-2p21 | ¥ |
3p-model A3S 2 O<pi<12 T-oga(W?2),
(i=1.23) with ¢=2 in (A33).
b | Bounded A4l | A6 1. |fshi|H>0 P min{2H,1}+1 v
Cascades A9 2 << Pi
Ja<=) =1.2.3)
V1. Cascade models for £(x) and a | ” one for fix), with canonical conservation:
a |Beta-models | A3.1|A40,45{12[e20 [0<Ds<d 1-(d-Dg) NN
a' | lognormal casc. | A33 [Adb,45 [12]e>0 |opw>0 l-opw?in2 | ¥ |
b |FIsC* ad3atw  [1,2]/>0 |HS0-B2 2H*+B v
p. Dg, or opw

aModels designated with an “a” are stationary in the “broad” sense, where the autocorrelation function depends

only on the separation: {(w(x+rw(x)) e 8(r) (I-I); {f’(x4+r)f’(x)) = rZHy OV, with—1/2 <H; < 0); (E(x+r)e(x))
o rK(2) (V-VI, with 0 < K(2) = 1-§ < 1). These models are also stochastically discontinuous since, e.g..
{[w(x+r>-w(x)]2) =0 for r 2 0.

e associated models designated with a “b” are (broad-sense) nonstationary but stochastically continuous in
‘the sense that, as r — 0, {[fx+r)—fx)]2) e« r¥2) — 0 with 0 < §(2) = B—1 < 2. In categories I-II, one can go
from model “a” to model “b” in d = | simply by taking a running sum; they are “additive” models.
+Scaling Gaussian Stationary Noise.

*Fractionally Integrated Singular Cascade.
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Table Al (end): Scale-Invariant Processes. Multifractal statistics and associated ergodicity properties.

Multi- Inter- Bi-fractal properties? Ergodicity Properties?
scaling? | mittency? N
(K(qyw0) (position in ¢ = 1 plane) (remarks)

Up& |[forwfores

... forIVI's

Hi(w.fore) IC;(wi&x €) | Cyovrs)
no |NA.INA.|no }O N.A. (negative values) 10 trivial exgodici
no |NANA.|no |12 NA( ~ " ) {0 large & jons in local 1-pt. statistics and
lization-i lization differences.
no |NA.|NA|no |O NA( = =) |0 103 events are generally enough to sample up to
=30's (cf. “30" rule).

no INA.|NA.Ino |12 NA(C » ") |0 of.1b
no |[N.A.|NA.|Jno |0 NA( ~ ") Jo of order g 2 o are divergent.
yes IN.A.JN.A.{no [min{l/ot1} {[NA.C = " ) |0 samc as Ib and 1Ib, but worse due to divergences.
no |N.A.[NA.|no |O NA(C ~ ") 10 of. Ila
no |[N.A.|NA.Ino [H; NA( =~ =~ |0 of. Ilb

plogap(1-pllogy(1-py+1 | C1(€)¥ | (e(rx)) dsitribution is independent of the
realization.

(dglogy (Wt = (€(L:0)) is independent of relization.
{WlogaW), from (A33).
yes |no {no |NAtImin{H,1} {O N.A.Y | although on a bounded domain, between fi =
T1:-301(1-2p¥2iH), the pdf has lognormal-like
5 and the associ pling probb
are also broadly distributed
no yes |yes |0 d-Dg C1(€)* | no divergence in (e(r:x)9).
no {yes lyes |yes |0 Olw?/2In2 Ci(€)*] (e(rux)?) divergenes for g 2 dIC,.
yes | no noJ yes |H* 0 Cie? | K(g) for Vf's: cf. comesponding e-model.

In standard singularity analysis using next-neighbor absolute differences, spurious scale-breaks occur due to
'm% construction of this model.
ing ute gradients of a singular cascade model only emphasizes the spikes, and the same singulari
is found (Lavallée et al., 1993). y e P ¢ sngwanty
‘mmm gradients of a FISC have the same singularity properties as the original cascade (Lavallée e al.,
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A.5 Summary

We have described specific algorithms for constructing mono- and multiscaling
stationary measures amenable to singularity analysis (Section 4.4 in main text), as well as
mono- and multiscaling nonstationary functions with stationary increments amenable to
structure function analysis (Section 4.2 in main body). In each case, we have specified
the dependency of the appropriate scaling exponents on the parameters of the model.
One example in two spatial dimensions is described explicitly and, in all others,
generalization from 1D to 2D is straightforward. This collection of models is
comprehensive enough to calibrate and study the sensitivity of any standard multifractal
data analysis procedure using arbitrary amounts of synthetic data with controllable
statistical properties. In particular, convergence rates of spatial averages to their
ensemble counterparts can be investigated since the models have variable degrees of
ergodicity. Table Al organizes the models by category, lists their parameters and
summarizes their properties, while Fig. A11 displays their inter-relations graphically.

Validation of analysis procedures is only one application for stochastic modeling. In
our specific area of research, the effects of internal cloud structure on radiative properties,
we have used multifractal models as artificial clouds-in-a-computer with controllable
properties. Extensive numerical experimentation, using Monte Carlo and other radiative
transfer techniques, has lead us to new insight into the ways clouds affect the Earth’s
radjative budget (Cahalan 1994) and ways of retrieving cloud properties from satellite
(Marshak et al. 1995a,b) and lidar (Davis et al. 1996b) data.

Singularity analysis: Klq)=0 Ki@)#0, 9201
{absokse (measures or gradient-fields)
[ ]
Iwoauce Gaussian-type rolax g o linear K{q)
3 comelations whits olsns. argodicly moxmre
3 / \ 3 9>0
3 Coumsn Livy-stabie S
— whils nolsed § nmllne(ar KaQ
(ST“) rolax siasonarty (take g sums) J E__ _i A <4
= v v TV H
E e e o
€ ) Additive Models Hybrid Models
Uq) =qH, =92 G(q) = minfghr, 1} (g) =min{gH,1}  L(q) = gH"-K(Q)
Structure
function ¢ > -— —>
analysis:

Figure A11: Classification of Scale-Invariant Models. The formulas for the gth-order structure function

exponents refer to the models in the last row that are nonstationary but with stationary increments.

e e
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PREFACE

Nonstationarity is another name for intermittency, a phenomenon
which affects many physical processes in the atmospheric boundary
layer. Among these are the transfers of heat, momentum, and moisture,
and thus the propagation of electromagnetic waves. Nonstationarity also
appears in the nonlinear propagation of acoustic waves and in noise
radiation by supersonic jets and helicopters. Such signals are
commonplace in military communication systems, ship and submarine
stealth, and maneuvering and control problems. Also, data collected in
many diverse R&D programs frequently exhibit nonstationary features.
Of these a common one is turbulence data, which we know from
observations to be a complicated nonlinear dynamical phenomenon of
limited predictability.

Several advances in the theory of nonstationary random processes
have been made since the first workshop convened in 1991. And
although much research remains yet to be done, it seems opportune to
convert some of the existing work into a more permanent form. It is
debatable what impact the new knowledge has had on the development of
practical models of this important non-equilibrium phenomenon. The
chief aim of the workshop was therefore to provide a forum at which the
recent important contributions could be reported and discussed among
researchers from government, academia, and industry.

The theme of the workshop was all aspects of nonstationary
analysis, with the appeal for participation being made to engineers,
scientists, and mathematicians alike. This appeal is consistent with
that of the first workshop. The intent was to create a diverse
environment for researchers working in this genuinely multidisciplinary
field to mutually share their ideas. The premier objective of the
workshop was to consolidate recent developments in nonstationary
analysis and present the material in a "tutorial mode." A second
objective was to delineate open problems.

We would like to express our gratitude to those who assisted us in
convening the workshop. Sincere thanks g0 to Jack Preisser (NASA
Langley), Frank Halsall (NSWC-Carderock), and Walter Bach (Army
Research Office), who collectively provided most of the financial support
necessary to bring the workshop to fruition. We gratefully acknowledge
the administrative support provided by Norma Treviio. To the
anonymous referees who reviewed the submitted manuscripts, and to
those who served as session chairmen (Frank Halsall, Alan Piersol and
Ken Bolland), we are also grateful. Most of all, though, we express our

deep appreciation to the authors, whose hard work and dedication made
the workshop a success.
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